首页 > 其他 > 详细

使用tensorflow进行简单的线性回归

时间:2018-06-22 00:28:42      阅读:277      评论:0      收藏:0      [点我收藏+]

使用tensorflow进行简单的线性回归

标签(空格分隔): tensorflow


数据准备

  • 使用np.random.uniform()生成x方向的数据
  • 使用np.random.uniform()生成bias数据
  • 直线方程为y=0.1x + 0.2
  • 使用梯度下降算法

代码

import numpy as np
import tensorflow as tf
path = ‘D:\tensorflow_quant\ailib\log_tmp‘

# 生成x数据
points = 100
vectors = []
for i in range(points):  # y=0.1*x + 0.2
    x = np.random.uniform(0, 0.66)
    y = x * 0.1 + 0.2 + np.random.uniform(0, 0.04)
    vectors.append([x, y])

x_data = [v[0] for v in vectors]
y_data = [v[1] for v in vectors]

#形成计算图
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * x_data + b
#定义损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
#定义优化器
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#对计算图开始计算
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    for step in range(1000):
        sess.run(train)
        if step%5==0:
            print(step,sess.run(loss),sess.run(w),sess.run(b))
    #生成计算日志
    writer = tf.Summary.FileWriter(path,sess.graph)

结果汇总:

技术分享图片

使用tensorflow进行简单的线性回归

原文:https://www.cnblogs.com/guanzhicheng/p/9211464.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!