FFT
#include<bits/stdc++.h> using namespace std; #define N (1e7+10) inline int read() { char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } const double Pi=acos(-1.0); struct complex { double x,y; complex (double xx=0,double yy=0):x(xx),y(yy){} }; complex operator + (complex a,complex b){ return complex(a.x+b.x , a.y+b.y);} complex operator - (complex a,complex b){ return complex(a.x-b.x , a.y-b.y);} complex operator * (complex a,complex b){ return complex(a.x*b.x-a.y*b.y , a.x*b.y+a.y*b.x);} namespace fft { int l,r[N]; int limit=1; void FFT(complex A[],int type) { for(RG int i=0;i<limit;++i) if(i<r[i]) swap(A[i],A[r[i]]); for(RG int mid=1;mid<limit;mid<<=1) { complex Wn(cos(Pi/mid),type*sin(Pi/mid)); for(int R=mid<<1,j=0;j<limit;j+=R) { complex w(1,0); for(RG int k=0;k<mid;++k,w=w*Wn) { complex x=A[j+k],y=w*A[j+k+mid]; A[j+k]=x+y;A[j+mid+k]=x-y; } } } } void multi(int & n,int & m,complex *a,complex *b) { limit=1,l=0;memset(r,0,sizeof(r)); while(limit<=n+m) limit<<=1,++l; for(RG int i=0;i<limit;++i) r[i]=(r[i>>1]>>1)|((i&1)<<(l-1)); FFT(a,1);FFT(b,1); for(RG int i=0;i<=limit;++i) a[i]=a[i]*b[i]; FFT(a,-1); for(RG int i=0;i<=n+m;++i) a[i].x=a[i].x/limit+0.5)); n+=m; } }; int main() { return 0; }
原文:https://www.cnblogs.com/MediocreKonjac/p/9216595.html