首页 > 其他 > 详细

机器学习kNN

时间:2018-06-26 10:28:14      阅读:214      评论:0      收藏:0      [点我收藏+]
from numpy import * 
import operator


def createDataSet():
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = [A, A, B, B]
    return group, labels


def classify0(inX, dataSet, labels, k):
    dataSetSize = dataSet.shape[0]
    print dataSetSize
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis = 1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
        soredClassCount = sorted(classCount.iteritems(), key = operator.itemgetter(1), reverse = True)
    return soredClassCount[0][0]

if __name__=="__main__":
    group, labels = createDataSet()
    res = classify0([0,0], group, labels, 3)
    print res

kNN算法,找出距离最近的k个,label出现次数最多的

机器学习kNN

原文:https://www.cnblogs.com/luckygxf/p/9227046.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!