首页 > 其他 > 详细

ZOJ3543 Number String 动态规划

时间:2014-07-20 21:39:14      阅读:357      评论:0      收藏:0      [点我收藏+]

ZOJ3543 Number String 

状态f[i][j]表示长度为I的全排列,符合字符串的要求,最后一位数字是j的方案数。

重点在要始终保持是f算的排列的数量,然后转移时用这些推出来新的情况。

就是j<=i

从长度是i-1的排列推长度是i的时候。因为确定了最后一位以后,前面不考虑数值,考虑名次还是一个i-1的排列的某一个。所以,如果要再最后加一个j,可以考虑认为是把前面大于等于j的数字都加一,就得到i的一个排列。

对于‘I‘或者‘?‘

  f[i][j]+=f[i][2..j-1]

对于‘D‘或者‘?‘

  f[i][j]+=f[i][j..i-1]

 

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

const long long MOD  = 1000000007;
const int maxn = 1000 + 10 ;
char s[maxn];
long long f[maxn][maxn],sum[maxn];

int main()
{
    while(scanf("%s",s)!=EOF){
        int len = strlen(s);
        int n = len + 1 ;
        memset(f,0,sizeof(f));
        memset(f,0,sizeof(f));
        f[1][1]=1;
        for(int i=1;i<=n;i++) sum[i]=1;

        for(int i=2;i<=n;i++){
            if(s[i-2]==I || s[i-2]==?)
                for(int j=2;j<=i;j++)
                    f[i][j]=(f[i][j]+sum[j-1])%MOD;
            if(s[i-2]==D || s[i-2]==?)
                for(int j=1;j<i;j++)
                    f[i][j]=((sum[i-1]-sum[j-1]+MOD)%MOD+f[i][j])%MOD;
            for(int j=1;j<=i;j++)
                sum[j]=(sum[j-1]+f[i][j])%MOD;
        }

        printf("%lld\n",sum[n]);
    }
    return 0;
}

ZOJ3543 Number String 动态规划,布布扣,bubuko.com

ZOJ3543 Number String 动态规划

原文:http://www.cnblogs.com/lijianlin1995/p/3856364.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!