题目
给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对
T = 10000 ; N, M <= 10000000
分析
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<cstdlib>
#include<queue>
#include<ctime>
#include<vector>
#include<set>
#include<map>
#include<stack>
using namespace std;
int mu[10000010],f[10000010];
long long pre[10000010];
int prime[10000010],cnt,is[10000010];
inline int read(){
int x=0;char s=getchar();
while(!isdigit(s))s=getchar();
while(isdigit(s))x=(x<<3)+(x<<1)+(s-‘0‘),s=getchar();
return x;
}
inline void init(){
int i,j,k;
mu[1]=1;
for(i=2;i<=10000000;i++){
if(!is[i]){
prime[++cnt]=i;
mu[i]=-1;
}
for(j=1;j<=cnt,i*prime[j]<=10000000;j++){
is[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(j=1;j<=cnt;j++)
for(i=1;i*prime[j]<=10000000;i++)
f[i*prime[j]]+=mu[i];
for(i=1;i<=10000000;i++)
pre[i]=pre[i-1]+f[i];
}
int main()
{ int n,m,i,j,le,ri,t;
scanf("%d",&t);
init();
while(t--){
n=read(),m=read();
if(n>m)swap(n,m);
long long ans=0;
for(le=1;le<=n;le=ri+1){
ri=min(n/(n/le),m/(m/le));
ans+=(long long)(n/le)*(m/le)*(pre[ri]-pre[le-1]);
}
printf("%lld\n",ans);
}
return 0;
}
原文:https://www.cnblogs.com/yzxverygood/p/9246014.html