好套路的题啊,,,
我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间
显然\(minmax\)容斥
\[E(max\{S\}) = \sum\limits_{T \subseteq S} (-1)^{|T| + 1}E(min\{T\})\]
那么问题就转化为了求每个集合中最早出现的\(1\)的期望时间
假如在\(k\)时刻出现,那么前\(k - 1\)时刻一定都是取的补集的子集,记\(T\)补集的所有子集概率和为\(P\)
\[E(min\{T\}) = \sum\limits_{k = 1}^{\infty}kP(1 - P)^{k - 1}\]
是一个离散变量的几何分布
设\(P(x = a) = p\)
那么取到\(a\)的期望为
\[
\begin{aligned}
E(x = a) &= \sum\limits_{k = 1}^{\infty}k(1 - p)^{k - 1}p \&= p\sum\limits_{k = 1}^{infty}k(1 - p)^{k - 1}
\end{aligned}
\]
记\(f(x) = 1 + 2x + 3x^2 + 4x^3 + \dots\)
则\(xf(x) = x + 2x^2 + 3x^3 + 4x^4 + \dots\)
则\((1 - x)f(x) = 1 + x + x^2 + x^3 + \dots\)
对于\(0 < x < 1\),\((1 - x)f(x)\)是收敛的,可以取到
\[(1 - x)f(x) = \frac{1}{1 - x}\]
\[f(x) = \frac{1}{(1 - x)^2}\]
所以
\[
\begin{aligned}
E(x = a) &= p\frac{1}{p^2} \&= \frac{1}{p}
\end{aligned}
\]
非常棒,我们只需要求出所有集合的子集概率和就好了
其实就是或运算的\(FWT\)
然后就切掉辣
复杂度\(O(n2^n)\)
代码非常短
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int maxn = (1 << 20);
int n,N,cnt[maxn];
double p[maxn],ans;
int main(){
scanf("%d",&n); N = (1 << n);
for (int i = 0; i < N; i++) scanf("%lf",&p[i]);
for (int i = 1; i < N; i <<= 1)
for (int j = 0; j < N; j += (i << 1))
for (int k = 0; k < i; k++)
p[j + k + i] += p[j + k];
for (int i = 1; i < N; i++) cnt[i] = cnt[i >> 1] + (i & 1);
for (int i = 1; i < N; i++){
if (1.0 - p[(N - 1) ^ i] < 1e-9){puts("INF"); return 0;}
ans += ((cnt[i] & 1) ? 1.0 : -1.0) * (1.0 / (1 - p[(N - 1) ^ i]));
}
printf("%.9lf\n",ans);
return 0;
}
BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】
原文:https://www.cnblogs.com/Mychael/p/9260857.html