Very classic problem. You can brush up your DP and Searching skills.
DP:
class Solution { public: int maxSubArray(int A[], int n) { // dp[i + 1] = max(dp[i] + A[i], A[i]); //int start = 0, end = 0; int max = A[0]; int sum = A[0]; for (int i = 1; i < n; i++) { if (A[i] >(sum + A[i])) { sum = A[i]; //if (sum > max) start = i; } else { sum = (sum + A[i]); //if (sum > max) end = i; } max = sum > max ? sum : max; } return max; } };
Equation: DP[i + 1] = max(DP[i] + A[i + 1], A[i + 1]). In case subarray location is needed, please check the commented lines.
And it is brand new to me as a rookie that it can also be solved by binary search ! We get 3 values: result of 1st half, result of 2nd half, and 3rd is the cross boundary case:
class Solution { public: int bigger(int a, int b) { return a > b ? a : b; } int solve(int A[], int start, int end) { if (start == end) return A[start]; int mid = start + (end - start) / 2; int leftMax = solve(A, start, mid); int rightMax = solve(A, mid + 1, end); // cross boundary? int sum0 = A[mid], cMaxL = A[mid]; for (int i = mid - 1; i >= start; i--) { sum0 += A[i]; cMaxL = bigger(sum0, cMaxL); } int sum1 = A[mid + 1], cMaxR = A[mid + 1]; for (int i = mid + 2; i <= end; i++) { sum1 += A[i]; cMaxR = bigger(sum1, cMaxR); } return bigger(bigger(leftMax, rightMax), cMaxL + cMaxR); } int maxSubArray(int A[], int n) { return solve(A, 0, n-1); } };
Deserve to revise later !
LeetCode "Maximum Subarray",布布扣,bubuko.com
原文:http://www.cnblogs.com/tonix/p/3857651.html