如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择。由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序?
由于Python是跨平台的,自然也应该提供一个跨平台的多进程支持。multiprocessing模块就是跨平台版本的多进程模块。
multiprocessing模块提供了一个Process类来代表一个进程对象,下面的例子演示了启动一个子进程并等待其结束:
from multiprocessing import Process import os # 子进程要执行的代码 def run_proc(name): print(‘子进程运行中,name= %s ,pid=%d...‘ % (name, os.getpid())) if __name__==‘__main__‘: print(‘父进程 %d.‘ % os.getpid()) p = Process(target=run_proc, args=(‘test‘,)) print(‘子进程将要执行‘) p.start() p.join() print(‘子进程已结束‘)
Process([group [, target [, name [, args [, kwargs]]]]])
from multiprocessing import Process import os from time import sleep # 子进程要执行的代码 def run_proc(name, age, **kwargs): for i in range(10): print(‘子进程运行中,name= %s,age=%d ,pid=%d...‘ % (name, age,os.getpid())) print(kwargs) sleep(0.5) if __name__==‘__main__‘: print(‘父进程 %d.‘ % os.getpid()) p = Process(target=run_proc, args=(‘test‘,18), kwargs={"m":20}) print(‘子进程将要执行‘) p.start() sleep(1) p.terminate() p.join() print(‘子进程已结束‘)
运行结果:
父进程 21378. 子进程将要执行 子进程运行中,name= test,age=18 ,pid=21379... {‘m‘: 20} 子进程运行中,name= test,age=18 ,pid=21379... {‘m‘: 20} 子进程已结束
#coding=utf-8 from multiprocessing import Process import time import os #两个子进程将会调用的两个方法 def worker_1(interval): print("worker_1,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid())) t_start = time.time() time.sleep(interval) #程序将会被挂起interval秒 t_end = time.time() print("worker_1,执行时间为‘%0.2f‘秒"%(t_end - t_start)) def worker_2(interval): print("worker_2,父进程(%s),当前进程(%s)"%(os.getppid(),os.getpid())) t_start = time.time() time.sleep(interval) t_end = time.time() print("worker_2,执行时间为‘%0.2f‘秒"%(t_end - t_start)) #输出当前程序的ID print("进程ID:%s"%os.getpid()) #创建两个进程对象,target指向这个进程对象要执行的对象名称, #args后面的元组中,是要传递给worker_1方法的参数, #因为worker_1方法就一个interval参数,这里传递一个整数2给它, #如果不指定name参数,默认的进程对象名称为Process-N,N为一个递增的整数 p1=Process(target=worker_1,args=(2,)) p2=Process(target=worker_2,name="dongGe",args=(1,)) #使用"进程对象名称.start()"来创建并执行一个子进程, #这两个进程对象在start后,就会分别去执行worker_1和worker_2方法中的内容 p1.start() p2.start() #同时父进程仍然往下执行,如果p2进程还在执行,将会返回True print("p2.is_alive=%s"%p2.is_alive()) #输出p1和p2进程的别名和pid print("p1.name=%s"%p1.name) print("p1.pid=%s"%p1.pid) print("p2.name=%s"%p2.name) print("p2.pid=%s"%p2.pid) #join括号中不携带参数,表示父进程在这个位置要等待p1进程执行完成后, #再继续执行下面的语句,一般用于进程间的数据同步,如果不写这一句, #下面的is_alive判断将会是True,在shell(cmd)里面调用这个程序时 #可以完整的看到这个过程,大家可以尝试着将下面的这条语句改成p1.join(1), #因为p2需要2秒以上才可能执行完成,父进程等待1秒很可能不能让p1完全执行完成, #所以下面的print会输出True,即p1仍然在执行 p1.join() print("p1.is_alive=%s"%p1.is_alive())
执行结果:
进程ID:19866 p2.is_alive=True p1.name=Process-1 p1.pid=19867 p2.name=dongGe p2.pid=19868 worker_1,父进程(19866),当前进程(19867) worker_2,父进程(19866),当前进程(19868) worker_2,执行时间为‘1.00‘秒 worker_1,执行时间为‘2.00‘秒 p1.is_alive=False
创建新的进程还能够使用类的方式,可以自定义一个类,继承Process类,每次实例化这个类的时候,就等同于实例化一个进程对象,请看下面的实例:
from multiprocessing import Process import time import os #继承Process类 class Process_Class(Process): #因为Process类本身也有__init__方法,这个子类相当于重写了这个方法, #但这样就会带来一个问题,我们并没有完全的初始化一个Process类,所以就不能使用从这个类继承的一些方法和属性, #最好的方法就是将继承类本身传递给Process.__init__方法,完成这些初始化操作 def __init__(self,interval): Process.__init__(self) self.interval = interval #重写了Process类的run()方法 def run(self): print("子进程(%s) 开始执行,父进程为(%s)"%(os.getpid(),os.getppid())) t_start = time.time() time.sleep(self.interval) t_stop = time.time() print("(%s)执行结束,耗时%0.2f秒"%(os.getpid(),t_stop-t_start)) if __name__=="__main__": t_start = time.time() print("当前程序进程(%s)"%os.getpid()) p1 = Process_Class(2) #对一个不包含target属性的Process类执行start()方法,就会运行这个类中的run()方法,所以这里会执行p1.run() p1.start() p1.join() t_stop = time.time() print("(%s)执行结束,耗时%0.2f"%(os.getpid(),t_stop-t_start))
当需要创建的子进程数量不多时,可以直接利用multiprocessing中的Process动态成生多个进程,但如果是上百甚至上千个目标,手动的去创建进程的工作量巨大,此时就可以用到multiprocessing模块提供的Pool方法。
初始化Pool时,可以指定一个最大进程数,当有新的请求提交到Pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到指定的最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来执行,请看下面的实例:
from multiprocessing import Pool import os,time,random def worker(msg): t_start = time.time() print("%s开始执行,进程号为%d"%(msg,os.getpid())) #random.random()随机生成0~1之间的浮点数 time.sleep(random.random()*2) t_stop = time.time() print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3 for i in range(0,10): #Pool.apply_async(要调用的目标,(传递给目标的参数元祖,)) #每次循环将会用空闲出来的子进程去调用目标 po.apply_async(worker,(i,)) print("----start----") po.close() #关闭进程池,关闭后po不再接收新的请求 po.join() #等待po中所有子进程执行完成,必须放在close语句之后 print("-----end-----")
运行结果:
----start---- 0开始执行,进程号为21466 1开始执行,进程号为21468 2开始执行,进程号为21467 0 执行完毕,耗时1.01 3开始执行,进程号为21466 2 执行完毕,耗时1.24 4开始执行,进程号为21467 3 执行完毕,耗时0.56 5开始执行,进程号为21466 1 执行完毕,耗时1.68 6开始执行,进程号为21468 4 执行完毕,耗时0.67 7开始执行,进程号为21467 5 执行完毕,耗时0.83 8开始执行,进程号为21466 6 执行完毕,耗时0.75 9开始执行,进程号为21468 7 执行完毕,耗时1.03 8 执行完毕,耗时1.05 9 执行完毕,耗时1.69 -----end-----
from multiprocessing import Pool import os,time,random def worker(msg): t_start = time.time() print("%s开始执行,进程号为%d"%(msg,os.getpid())) #random.random()随机生成0~1之间的浮点数 time.sleep(random.random()*2) t_stop = time.time() print(msg,"执行完毕,耗时%0.2f"%(t_stop-t_start)) po=Pool(3) #定义一个进程池,最大进程数3 for i in range(0,10): po.apply(worker,(i,)) print("----start----") po.close() #关闭进程池,关闭后po不再接收新的请求 po.join() #等待po中所有子进程执行完成,必须放在close语句之后 print("-----end-----")
运行结果:
0开始执行,进程号为21532 0 执行完毕,耗时1.91 1开始执行,进程号为21534 1 执行完毕,耗时1.72 2开始执行,进程号为21533 2 执行完毕,耗时0.50 3开始执行,进程号为21532 3 执行完毕,耗时1.27 4开始执行,进程号为21534 4 执行完毕,耗时1.05 5开始执行,进程号为21533 5 执行完毕,耗时1.60 6开始执行,进程号为21532 6 执行完毕,耗时0.25 7开始执行,进程号为21534 7 执行完毕,耗时0.63 8开始执行,进程号为21533 8 执行完毕,耗时1.21 9开始执行,进程号为21532 9 执行完毕,耗时0.60 ----start---- -----end-----
Process之间有时需要通信,操作系统提供了很多机制来实现进程间的通信。
可以使用multiprocessing模块的Queue实现多进程之间的数据传递,Queue本身是一个消息列队程序,首先用一个小实例来演示一下Queue的工作原理:
#coding=utf-8 from multiprocessing import Queue q=Queue(3) #初始化一个Queue对象,最多可接收三条put消息 q.put("消息1") q.put("消息2") print(q.full()) #False q.put("消息3") print(q.full()) #True #因为消息列队已满下面的try都会抛出异常,第一个try会等待2秒后再抛出异常,第二个Try会立刻抛出异常 try: q.put("消息4",True,2) except: print("消息列队已满,现有消息数量:%s"%q.qsize()) try: q.put_nowait("消息4") except: print("消息列队已满,现有消息数量:%s"%q.qsize()) #推荐的方式,先判断消息列队是否已满,再写入 if not q.full(): q.put_nowait("消息4") #读取消息时,先判断消息列队是否为空,再读取 if not q.empty(): for i in range(q.qsize()): print(q.get_nowait())
运行结果:
False True 消息列队已满,现有消息数量:3 消息列队已满,现有消息数量:3 消息1 消息2 消息3
初始化Queue()对象时(例如:q=Queue()),若括号中没有指定最大可接收的消息数量,或数量为负值,那么就代表可接受的消息数量没有上限(直到内存的尽头);
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果为空,此时程序将被阻塞(停在读取状态),直到从消息列队读到消息为止,如果设置了timeout,则会等待timeout秒,若还没读取到任何消息,则抛出"Queue.Empty"异常;
2)如果block值为False,消息列队如果为空,则会立刻抛出"Queue.Empty"异常;
1)如果block使用默认值,且没有设置timeout(单位秒),消息列队如果已经没有空间可写入,此时程序将被阻塞(停在写入状态),直到从消息列队腾出空间为止,如果设置了timeout,则会等待timeout秒,若还没空间,则抛出"Queue.Full"异常;
2)如果block值为False,消息列队如果没有空间可写入,则会立刻抛出"Queue.Full"异常;
我们以Queue为例,在父进程中创建两个子进程,一个往Queue里写数据,一个从Queue里读数据:
from multiprocessing import Process, Queue import os, time, random # 写数据进程执行的代码: def write(q): for value in [‘A‘, ‘B‘, ‘C‘]: print ‘Put %s to queue...‘ % value q.put(value) time.sleep(random.random()) # 读数据进程执行的代码: def read(q): while True: if not q.empty(): value = q.get(True) print ‘Get %s from queue.‘ % value time.sleep(random.random()) else: break if __name__==‘__main__‘: # 父进程创建Queue,并传给各个子进程: q = Queue() pw = Process(target=write, args=(q,)) pr = Process(target=read, args=(q,)) # 启动子进程pw,写入: pw.start() # 等待pw结束: pw.join() # 启动子进程pr,读取: pr.start() pr.join() # pr进程里是死循环,无法等待其结束,只能强行终止: print ‘‘ print ‘所有数据都写入并且读完‘
运行结果:
如果要使用Pool创建进程,就需要使用multiprocessing.Manager()中的Queue(),而不是multiprocessing.Queue(),否则会得到一条如下的错误信息:
RuntimeError: Queue objects should only be shared between processes through inheritance.
下面的实例演示了进程池中的进程如何通信:
#coding=utf-8 #修改import中的Queue为Manager from multiprocessing import Manager,Pool import os,time,random def reader(q): print("reader启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in range(q.qsize()): print("reader从Queue获取到消息:%s"%q.get(True)) def writer(q): print("writer启动(%s),父进程为(%s)"%(os.getpid(),os.getppid())) for i in "dongGe": q.put(i) if __name__=="__main__": print("(%s) start"%os.getpid()) q=Manager().Queue() #使用Manager中的Queue来初始化 po=Pool() #使用阻塞模式创建进程,这样就不需要在reader中使用死循环了,可以让writer完全执行完成后,再用reader去读取 po.apply(writer,(q,)) po.apply(reader,(q,)) po.close() po.join() print("(%s) End"%os.getpid())
运行结果:
(21156) start writer启动(21162),父进程为(21156) reader启动(21162),父进程为(21156) reader从Queue获取到消息:d reader从Queue获取到消息:o reader从Queue获取到消息:n reader从Queue获取到消息:g reader从Queue获取到消息:G reader从Queue获取到消息:e (21156) End
原文:https://www.cnblogs.com/amou/p/9264968.html