首页 > 其他 > 详细

神经网络学习笔记三——梯度检验、高级优化

时间:2018-07-05 10:07:01      阅读:145      评论:0      收藏:0      [点我收藏+]

梯度检验的意义:为了验证求导代码是否正确

思路:利用导数的定义

技术分享图片

可以去任意theta值对等式左边的导数用:

技术分享图片

来近似。一般EPSILON用一个很小的常量(10-4数量级,不宜太小)

因此若存在计算deltaJ(θ)的函数g(θ),则:

技术分享图片

来检验函数是否正确,一般正常情况左右两端至少有四位有效数字是一样的(EPSILON = 10-4下)

 

对于实际操作下的向量情况,进行合理的改造即可:

对于计算技术分享图片的函数技术分享图片,我们想要检验其结果,可以定义技术分享图片,其中

技术分享图片

是第i个基向量,维度同θ,只在第i行有个1其他都是0。

同理可以定义技术分享图片,这样检验式变成了:

技术分享图片

该方法主要运用于原算法中计算J(W,b)的导数环节

 

神经网络学习笔记三——梯度检验、高级优化

原文:https://www.cnblogs.com/zodiac7/p/9266599.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!