本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie
list
----------------------------------------------------------------------list<int> L; L.push_back(0); L.push_front(1); L.insert(++L.begin(), 2); copy(L.begin(), L.end(), ostream_iterator<int>(cout, " ")); // The values that are printed are 1 2 0 示例2: #include <iostream> #include <iterator> #include <list> #include <numeric> #include <algorithm> using namespace std; list<int> mylist1, mylist2; void display(){ cout << "-------------------------------------------------------" << endl; copy(mylist1.begin(), mylist1.end(), ostream_iterator<int>(cout, " ")); cout << endl; copy(mylist2.begin(), mylist2.end(), ostream_iterator<int>(cout, " ")); cout << endl; } int main(){ list<int>::iterator it; for(int i = 1; i <= 4; i++) mylist1.push_back(i); //1 2 3 4 for(int i = 1; i <= 3; i++) mylist2.push_back(i * 10); // 10 20 30 it = mylist1.begin(); ++it; // it 指向元素 2 display(); mylist1.splice(it, mylist2); display(); /* mylist1: 1 10 20 30 2 3 4 mylist2: 空 it 还是指向元素 2 */ mylist2.splice(mylist2.begin(), mylist1, it); display(); /* mylist1: 1 10 20 30 3 4 mylist2: 2 it 现在 invalid */ it = mylist1.begin(); advance(it, 3); mylist1.splice(mylist1.begin(), mylist1, it, mylist1.end()); display(); it = mylist1.begin(); advance(it, 3); list<int>::iterator pos = mylist1.begin(); advance(pos,4); mylist1.splice(pos, mylist1, it, mylist1.end()); //出错了,position 不能位于 [first, last) 之内 --> 感觉这样设计不好,不能编译期提醒,至少要在运行期提醒吧。。。 display(); }
#ifndef __SGI_STL_INTERNAL_LIST_H #define __SGI_STL_INTERNAL_LIST_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif //list的节点,这是一个双向链表 template <class T> struct __list_node { typedef void* void_pointer; void_pointer next; void_pointer prev; T data; }; //list迭代器的设计。(vector的迭代器不需要单独设计,用原生指针就可以) template<class T, class Ref, class Ptr> struct __list_iterator { typedef __list_iterator<T, T&, T*> iterator; typedef __list_iterator<T, const T&, const T*> const_iterator; typedef __list_iterator<T, Ref, Ptr> self; typedef bidirectional_iterator_tag iterator_category; typedef T value_type; typedef Ptr pointer; typedef Ref reference; typedef __list_node<T>* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; link_type node; // 指向 list 节点的指针 __list_iterator(link_type x) : node(x) {} __list_iterator() {} __list_iterator(const iterator& x) : node(x.node) {} bool operator==(const self& x) const { return node == x.node; } bool operator!=(const self& x) const { return node != x.node; } //取节点的数据值 reference operator*() const { return (*node).data; } #ifndef __SGI_STL_NO_ARROW_OPERATOR pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ //迭代器累加 1, 前进一个节点 self& operator++() { node = (link_type)((*node).next); // 因为 __list_node 里的 prev 和 next 的类型是 void * , //所以还要将它们显示转换为 link_type 类型,即 __list_node * 类型 return *this; } self operator++(int) { self tmp = *this; ++*this; return tmp; } //迭代器递减 1,后退一个节点 self& operator--() { node = (link_type)((*node).prev); return *this; } self operator--(int) { self tmp = *this; --*this; return tmp; } }; #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION template <class T, class Ref, class Ptr> inline bidirectional_iterator_tag iterator_category(const __list_iterator<T, Ref, Ptr>&) { return bidirectional_iterator_tag(); } template <class T, class Ref, class Ptr> inline T* value_type(const __list_iterator<T, Ref, Ptr>&) { return 0; } template <class T, class Ref, class Ptr> inline ptrdiff_t* distance_type(const __list_iterator<T, Ref, Ptr>&) { return 0; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ //list的数据结构 template <class T, class Alloc = alloc> class list { protected: typedef void* void_pointer; typedef __list_node<T> list_node; //空间配置器,每次配置一个节点大小 typedef simple_alloc<list_node, Alloc> list_node_allocator; public: typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef list_node* link_type; typedef size_t size_type; typedef ptrdiff_t difference_type; public: typedef __list_iterator<T, T&, T*> iterator; typedef __list_iterator<T, const T&, const T*> const_iterator; #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_bidirectional_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; typedef reverse_bidirectional_iterator<iterator, value_type, reference, difference_type> reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ protected: //配置一个节点并传回 link_type get_node() { return list_node_allocator::allocate(); } //释放 p 指向的节点空间 void put_node(link_type p) { list_node_allocator::deallocate(p); } //配置并构造一个节点使它的值为 x link_type create_node(const T& x) { link_type p = get_node(); __STL_TRY { construct(&p->data, x); } __STL_UNWIND(put_node(p)); return p; } //析构并释放一个节点 void destroy_node(link_type p) { destroy(&p->data); put_node(p); } protected: void empty_initialize() { node = get_node(); //配置一个节点空间,令 node 指向它 node->next = node; // 令 node 的头尾都指向自己,不设元素值 node->prev = node; } void fill_initialize(size_type n, const T& value) { empty_initialize(); __STL_TRY { insert(begin(), n, value); } __STL_UNWIND(clear(); put_node(node)); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } #else /* __STL_MEMBER_TEMPLATES */ void range_initialize(const T* first, const T* last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } void range_initialize(const_iterator first, const_iterator last) { empty_initialize(); __STL_TRY { insert(begin(), first, last); } __STL_UNWIND(clear(); put_node(node)); } #endif /* __STL_MEMBER_TEMPLATES */ protected: link_type node; //只要一个指针,便可表示整个环状双向链表。 // node指向刻意置于尾端的一个空白节点,满足"前闭后开" public: list() { empty_initialize(); } // 产生一个空链表 iterator begin() { return (link_type)((*node).next); } const_iterator begin() const { return (link_type)((*node).next); } iterator end() { return node; } const_iterator end() const { return node; } reverse_iterator rbegin() { return reverse_iterator(end()); } const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } reverse_iterator rend() { return reverse_iterator(begin()); } const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } bool empty() const { return node->next == node; } size_type size() const { size_type result = 0; distance(begin(), end(), result); return result; } size_type max_size() const { return size_type(-1); } reference front() { return *begin(); } const_reference front() const { return *begin(); } reference back() { return *(--end()); } const_reference back() const { return *(--end()); } void swap(list<T, Alloc>& x) { __STD::swap(node, x.node); } //在迭代器 positioni 所指空间插入一个节点,内容为 x iterator insert(iterator position, const T& x) { //使用 create_node 配置并构造一个节点,让它的值为 x link_type tmp = create_node(x); //调整双向指针,使 tmp 插入进去 tmp->next = position.node; tmp->prev = position.node->prev; (link_type(position.node->prev))->next = tmp; position.node->prev = tmp; return tmp; } iterator insert(iterator position) { return insert(position, T()); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator position, InputIterator first, InputIterator last); #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator position, const T* first, const T* last); void insert(iterator position, const_iterator first, const_iterator last); #endif /* __STL_MEMBER_TEMPLATES */ void insert(iterator pos, size_type n, const T& x); void insert(iterator pos, int n, const T& x) { insert(pos, (size_type)n, x); } void insert(iterator pos, long n, const T& x) { insert(pos, (size_type)n, x); } void push_front(const T& x) { insert(begin(), x); } void push_back(const T& x) { insert(end(), x); } iterator erase(iterator position) { link_type next_node = link_type(position.node->next); link_type prev_node = link_type(position.node->prev); prev_node->next = next_node; next_node->prev = prev_node; destroy_node(position.node); return iterator(next_node); } iterator erase(iterator first, iterator last); void resize(size_type new_size, const T& x); void resize(size_type new_size) { resize(new_size, T()); } void clear(); void pop_front() { erase(begin()); } //移除头节点 void pop_back() { //移除尾节点 其实可能直接 erase(--end()); 不过效果一样 iterator tmp = end(); erase(--tmp); } list(size_type n, const T& value) { fill_initialize(n, value); } list(int n, const T& value) { fill_initialize(n, value); } list(long n, const T& value) { fill_initialize(n, value); } explicit list(size_type n) { fill_initialize(n, T()); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> list(InputIterator first, InputIterator last) { range_initialize(first, last); } #else /* __STL_MEMBER_TEMPLATES */ list(const T* first, const T* last) { range_initialize(first, last); } list(const_iterator first, const_iterator last) { range_initialize(first, last); } #endif /* __STL_MEMBER_TEMPLATES */ list(const list<T, Alloc>& x) { range_initialize(x.begin(), x.end()); } ~list() { clear(); put_node(node); } list<T, Alloc>& operator=(const list<T, Alloc>& x); protected: //将某连续范围[first, last)的元素迁移到某个特定位置 position 之前 //非公开接口 void transfer(iterator position, iterator first, iterator last) { if (position != last) { //如果 position == last 那就不用迁移了 (*(link_type((*last.node).prev))).next = position.node; (*(link_type((*first.node).prev))).next = last.node; (*(link_type((*position.node).prev))).next = first.node; link_type tmp = link_type((*position.node).prev); (*position.node).prev = (*last.node).prev; (*last.node).prev = (*first.node).prev; (*first.node).prev = tmp; } } public: //将 x 接合于 position 所指位置之前。 x 必须不同于 *this --> 这样限制 x 好吗? 不应该提前到编译期提醒客户端吗?我试了下 x 等于 *this,运行没出错 void splice(iterator position, list& x) { if (!x.empty()) transfer(position, x.begin(), x.end()); } //将 i 所指元素接合于 position 所指位置之前。 position 和 i 可指向同一个 list // ?? 这里 list &参数有什么用? --> 我感觉没用,有迭代器 i 就够了 void splice(iterator position, list&, iterator i) { iterator j = i; ++j; if (position == i || position == j) return; //transfer 里有判断 position == j 的情况,没判断 position == i 的情况,而将自己移到自己前面什么都不用做 transfer(position, i, j); } //将 [first, last) 内的所有元素接合于 position 所指位置之前 // position 和 [first, last) 可指向同一个 list, // 但 position 不能位于 [first, last) 之内 void splice(iterator position, list&, iterator first, iterator last) { if (first != last) transfer(position, first, last); } void remove(const T& value); void unique(); void merge(list& x); void reverse(); void sort(); #ifdef __STL_MEMBER_TEMPLATES template <class Predicate> void remove_if(Predicate); template <class BinaryPredicate> void unique(BinaryPredicate); template <class StrictWeakOrdering> void merge(list&, StrictWeakOrdering); template <class StrictWeakOrdering> void sort(StrictWeakOrdering); #endif /* __STL_MEMBER_TEMPLATES */ friend bool operator== __STL_NULL_TMPL_ARGS (const list& x, const list& y); }; template <class T, class Alloc> inline bool operator==(const list<T,Alloc>& x, const list<T,Alloc>& y) { typedef typename list<T,Alloc>::link_type link_type; link_type e1 = x.node; link_type e2 = y.node; link_type n1 = (link_type) e1->next; link_type n2 = (link_type) e2->next; for ( ; n1 != e1 && n2 != e2 ; n1 = (link_type) n1->next, n2 = (link_type) n2->next) if (n1->data != n2->data) return false; return n1 == e1 && n2 == e2; } template <class T, class Alloc> inline bool operator<(const list<T, Alloc>& x, const list<T, Alloc>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class T, class Alloc> inline void swap(list<T, Alloc>& x, list<T, Alloc>& y) { x.swap(y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class InputIterator> void list<T, Alloc>::insert(iterator position, InputIterator first, InputIterator last) { for ( ; first != last; ++first) insert(position, *first); } #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, const T* first, const T* last) { for ( ; first != last; ++first) insert(position, *first); } template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, const_iterator first, const_iterator last) { for ( ; first != last; ++first) insert(position, *first); } #endif /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc> void list<T, Alloc>::insert(iterator position, size_type n, const T& x) { for ( ; n > 0; --n) insert(position, x); } template <class T, class Alloc> list<T,Alloc>::iterator list<T, Alloc>::erase(iterator first, iterator last) { while (first != last) erase(first++); return last; } template <class T, class Alloc> void list<T, Alloc>::resize(size_type new_size, const T& x) { iterator i = begin(); size_type len = 0; for ( ; i != end() && len < new_size; ++i, ++len) ; if (len == new_size) erase(i, end()); else // i == end() insert(end(), new_size - len, x); } template <class T, class Alloc> void list<T, Alloc>::clear() { link_type cur = (link_type) node->next; while (cur != node) { //遍历每一个节点 link_type tmp = cur; cur = (link_type) cur->next; destroy_node(tmp); //析构并释放一个节点 } node->next = node; //恢复空链表时的节点状态 node->prev = node; } template <class T, class Alloc> list<T, Alloc>& list<T, Alloc>::operator=(const list<T, Alloc>& x) { if (this != &x) { iterator first1 = begin(); iterator last1 = end(); const_iterator first2 = x.begin(); const_iterator last2 = x.end(); while (first1 != last1 && first2 != last2) *first1++ = *first2++; if (first2 == last2) erase(first1, last1); else insert(last1, first2, last2); } return *this; } //将数值为 value 之所有元素移除 template <class T, class Alloc> void list<T, Alloc>::remove(const T& value) { iterator first = begin(); iterator last = end(); while (first != last) { iterator next = first; ++next; if (*first == value) erase(first); first = next; } } //移除连续相同的元素,只保留一个 template <class T, class Alloc> void list<T, Alloc>::unique() { iterator first = begin(); iterator last = end(); if (first == last) return; //空链表,什么都不必做 iterator next = first; while (++next != last) { //遍历每一个节点 if (*first == *next) //相同移除之 erase(next); else //不同调整指针指向 first = next; next = first; } } template <class T, class Alloc> void list<T, Alloc>::merge(list<T, Alloc>& x) { iterator first1 = begin(); iterator last1 = end(); iterator first2 = x.begin(); iterator last2 = x.end(); while (first1 != last1 && first2 != last2) if (*first2 < *first1) { iterator next = first2; transfer(first1, first2, ++next); first2 = next; } else ++first1; if (first2 != last2) transfer(last1, first2, last2); } // reverse() 将 *this 的内容逆向重置 template <class T, class Alloc> void list<T, Alloc>::reverse() { if (node->next == node || link_type(node->next)->next == node) return; iterator first = begin(); ++first; while (first != end()) { iterator old = first; ++first; transfer(begin(), old, first); } } /* list 不能使用 STL 算法 sort(), 必须使用自己的 sort() 成员函数 因为 STL 算法 sort() 只接受 RandomAccessItertor ?? STL 算法 sort() 为什么不设计接受 BidirectionalIterator 不过我觉得即使 STL 算法 sort() 接受 BidirectionalIterator , 它里面实现也是 用类似 iter_swap 的方法,这里也要针对链表的特点重新写 sort() 函数 /* template <class T, class Alloc> void list<T, Alloc>::sort() { // if (node->next == node || link_type(node->next)->next == node) return; list<T, Alloc> carry; list<T, Alloc> counter[64]; int fill = 0; while (!empty()) { carry.splice(carry.begin(), *this, begin()); int i = 0; while(i < fill && !counter[i].empty()) { counter[i].merge(carry); carry.swap(counter[i++]); } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1]); swap(counter[fill-1]); } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc> template <class Predicate> void list<T, Alloc>::remove_if(Predicate pred) { iterator first = begin(); iterator last = end(); while (first != last) { iterator next = first; ++next; if (pred(*first)) erase(first); first = next; } } template <class T, class Alloc> template <class BinaryPredicate> void list<T, Alloc>::unique(BinaryPredicate binary_pred) { iterator first = begin(); iterator last = end() while (++next != last) { if (binary_pred(*first, *next)) erase(next); else first = next; next = first; } } template <class T, class Alloc> template <class StrictWeakOrdering> void list<T, Alloc>::merge(list<T, Alloc>& x, StrictWeakOrdering comp) { iterator first1 = begin(); iterator last1 = end(); iterator first2 = x.begin(); iterator last2 = x.end(); while (first1 != last1 && first2 != last2) if (comp(*first2, *first1)) { iterator next = first2; transfer(first1, first2, ++next); first2 = next; } else ++first1; if (first2 != last2) transfer(last1, first2, last2); } template <class T, class Alloc> template <class StrictWeakOrdering> void list<T, Alloc>::sort(StrictWeakOrdering comp) { if (node->next == node || link_type(node->next)->next == node) return; list<T, Alloc> carry; list<T, Alloc> counter[64]; int fill = 0; while (!empty()) { carry.splice(carry.begin(), *this, begin()); int i = 0; while(i < fill && !counter[i].empty()) { counter[i].merge(carry, comp); carry.swap(counter[i++]); } carry.swap(counter[i]); if (i == fill) ++fill; } for (int i = 1; i < fill; ++i) counter[i].merge(counter[i-1], comp); swap(counter[fill-1]); } #endif /* __STL_MEMBER_TEMPLATES */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_LIST_H */ // Local Variables: // mode:C++ // End:
STL源码剖析 容器 stl_list.h,布布扣,bubuko.com
原文:http://blog.csdn.net/zhengsenlie/article/details/38011161