Find the result of the following code:
unsigned long long allPairLcm(int n){
unsigned long long res = 0;
for( int i = 1; i<=n;i++)
for(int j=i+1;j<=n;j++)
res += lcm(i, j);// lcm means least common multiple
return res;
}
A straight forward implementation of the code may time out.
Input
Input starts with an integer T (≤ 25000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 5*106
).
Output
For each case, print the case number and the value returned by the function ‘allPairLcm(n)‘. As the
result can be large, we want the result modulo 2
64
.
Sample Input Output for Sample Input
4
2
10
13
100000
Case 1: 2
Case 2: 1036
Case 3: 3111
Case 4: 9134672774499923824
1 /* 2 题目大意:求lcm(1,2)+lcm(1,3)+lcm(2,3)+....+lcm(1,n)+....+lcm(n-2,n)+lcm(n-1,n) 3 设sum(n)为sum(lcm(i,j))(1<=i<j<=n)之间最小公倍数的和,f(n)为sum(i*n/gcd(i,n))(1<=i<n) 4 那么sum(n)=sum(n-1)+f(n)。可以用线性欧拉筛选+递推来做。 5 */ 6 #include <iostream> 7 #include <cstdio> 8 #include <cstring> 9 10 typedef unsigned long long LL; 11 const int maxn=5000005; 12 LL phi[maxn],sum[maxn],f[maxn]; 13 14 void Euler() 15 { 16 memset(phi,0,sizeof(phi)); 17 int i,j;phi[1]=1; 18 for(i=2;i<maxn;i++) 19 { 20 if(phi[i]) continue; 21 for(j=i;j<maxn;j+=i) 22 { 23 if(!phi[j]) phi[j]=j; 24 phi[j]=phi[j]/i*(i-1); 25 } 26 } 27 for(i=1;i<maxn;i++) phi[i]=phi[i]*i/2;//与i互质的数之和 28 } 29 30 void init() 31 { 32 Euler(); 33 memset(sum,0,sizeof(sum)); 34 memset(f,0,sizeof(f)); 35 int i,j;sum[1]=f[1]=0; 36 for(i=2;i<maxn;i++) 37 { 38 f[i]+=phi[i]*i;//与i互质的数之间的lcm之和 39 for(j=2*i;j<maxn;j+=i) 40 f[j]+=phi[i]*j;//gcd(x,j)=i的sum(lcm(x,j)) 41 sum[i]=sum[i-1]+f[i]; 42 } 43 } 44 45 int main() 46 { 47 //freopen("in.txt","r",stdin); 48 //freopen("out.txt","w",stdout); 49 init(); 50 int t,icase=0,n; 51 scanf("%d",&t); 52 while(t--) 53 { 54 scanf("%d",&n); 55 printf("Case %d: %llu\n",++icase,sum[n]); 56 } 57 return 0; 58 }
BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推),布布扣,bubuko.com
BNU 12846 LCM Extreme 最小公倍数之和(线性欧拉筛选+递推)
原文:http://www.cnblogs.com/xiong-/p/3859420.html