欢迎转载,转载请注明出处,徽沪一郎。
本文主要讲述在standalone cluster部署模式下,Spark Application在整个运行期间,资源(主要是cpu core和内存)的申请与释放。
构成Standalone cluster部署模式的四大组成部件如下图所示,分别为Master, worker, executor和driver,它们各自运行于独立的JVM进程。
从资源管理的角度来说
这些内容在standalone cluster模式下的容错性分析中也有所涉及,今天主要讲一下资源在分配之后不同场景下是如何被顺利回收的。
standalone cluster下最主要的当然是master,master必须先于worker和driver程序正常启动。
当master顺利启动完毕,可以开始worker的启动工作,worker在启动的时候需要向master发起注册,在注册消息中带有本worker节点的cpu core和内存。
调用顺序如下preStart->registerWithMaster->tryRegisterAllMasters
看一看tryRegisterAllMasters的代码
def tryRegisterAllMasters() {
for (masterUrl <- masterUrls) {
logInfo("Connecting to master " + masterUrl + "...")
val actor = context.actorSelection(Master.toAkkaUrl(masterUrl))
actor ! RegisterWorker(workerId, host, port, cores, memory, webUi.boundPort, publicAddress)
}
}
我们的疑问是RegisterWorker构造函数所需的参数memory和cores是从哪里获取的呢?
注意一下Worker中的main函数会创建WorkerArguments,
def main(argStrings: Array[String]) {
SignalLogger.register(log)
val args = new WorkerArguments(argStrings)
val (actorSystem, _) = startSystemAndActor(args.host, args.port, args.webUiPort, args.cores,
args.memory, args.masters, args.workDir)
actorSystem.awaitTermination()
}
memory通过函数inferDefaultMemory获取,而cores通过inferDefaultCores获取。
def inferDefaultCores(): Int = {
Runtime.getRuntime.availableProcessors()
}
def inferDefaultMemory(): Int = {
val ibmVendor = System.getProperty("java.vendor").contains("IBM")
var totalMb = 0
try {
val bean = ManagementFactory.getOperatingSystemMXBean()
if (ibmVendor) {
val beanClass = Class.forName("com.ibm.lang.management.OperatingSystemMXBean")
val method = beanClass.getDeclaredMethod("getTotalPhysicalMemory")
totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt
} else {
val beanClass = Class.forName("com.sun.management.OperatingSystemMXBean")
val method = beanClass.getDeclaredMethod("getTotalPhysicalMemorySize")
totalMb = (method.invoke(bean).asInstanceOf[Long] / 1024 / 1024).toInt
}
} catch {
case e: Exception => {
totalMb = 2*1024
System.out.println("Failed to get total physical memory. Using " + totalMb + " MB")
}
}
// Leave out 1 GB for the operating system, but don‘t return a negative memory size
math.max(totalMb - 1024, 512)
}
如果已经在配置文件中为显示指定了每个worker的core和memory,则使用配置文件中的值,具体配置参数为SPARK_WORKER_CORES和SPARK_WORKER_MEMORY
Master在收到RegisterWork消息之后,根据上报的信息为每一个worker创建相应的WorkerInfo.
case RegisterWorker(id, workerHost, workerPort, cores, memory, workerUiPort, publicAddress) =>
{
logInfo("Registering worker %s:%d with %d cores, %s RAM".format(
workerHost, workerPort, cores, Utils.megabytesToString(memory)))
if (state == RecoveryState.STANDBY) {
// ignore, don‘t send response
} else if (idToWorker.contains(id)) {
sender ! RegisterWorkerFailed("Duplicate worker ID")
} else {
val worker = new WorkerInfo(id, workerHost, workerPort, cores, memory,
sender, workerUiPort, publicAddress)
if (registerWorker(worker)) {
persistenceEngine.addWorker(worker)
sender ! RegisteredWorker(masterUrl, masterWebUiUrl)
schedule()
} else {
val workerAddress = worker.actor.path.address
logWarning("Worker registration failed. Attempted to re-register worker at same " +
"address: " + workerAddress)
sender ! RegisterWorkerFailed("Attempted to re-register worker at same address: "
+ workerAddress)
}
}
如果在worker注册上来的时候,已经有Driver Application注册上来,那么就需要将原先处于未分配资源状态的driver application启动相应的executor。
WorkerInfo在schedule函数中会被使用到,schedule函数处理逻辑概述如下
为了叙述简单,现仅列出平摊到各个worker的分配处理过程
for (worker > workers if worker.coresFree > 0 && worker.state == WorkerState.ALIVE) {
for (app <- waitingApps if app.coresLeft > 0) {
if (canUse(app, worker)) {
val coresToUse = math.min(worker.coresFree, app.coresLeft)
if (coresToUse > 0) {
val exec = app.addExecutor(worker, coresToUse)
launchExecutor(worker, exec)
app.state = ApplicationState.RUNNING
}
}
}
}
launchExecutor主要负责两件事情
def launchExecutor(worker: WorkerInfo, exec: ExecutorInfo) {
logInfo("Launching executor " + exec.fullId + " on worker " + worker.id)
worker.addExecutor(exec)
worker.actor ! LaunchExecutor(masterUrl,
exec.application.id, exec.id, exec.application.desc, exec.cores, exec.memory)
exec.application.driver ! ExecutorAdded(
exec.id, worker.id, worker.hostPort, exec.cores, exec.memory)
}
worker在收到LaunchExecutor指令后,也会记一笔账,将要使用掉的cpu core和memory从可用资源中减去,然后使用ExecutorRunner来负责生成Executor进程,注意Executor运行于独立的进程。代码如下
case LaunchExecutor(masterUrl, appId, execId, appDesc, cores_, memory_) =>
if (masterUrl != activeMasterUrl) {
logWarning("Invalid Master (" + masterUrl + ") attempted to launch executor.")
} else {
try {
logInfo("Asked to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_,
self, workerId, host,
appDesc.sparkHome.map(userSparkHome => new File(userSparkHome)).getOrElse(sparkHome),
workDir, akkaUrl, conf, ExecutorState.RUNNING)
executors(appId + "/" + execId) = manager
manager.start()
coresUsed += cores_
memoryUsed += memory_
masterLock.synchronized {
master ! ExecutorStateChanged(appId, execId, manager.state, None, None)
}
} catch {
case e: Exception => {
logError("Failed to launch executor %s/%d for %s".format(appId, execId, appDesc.name))
if (executors.contains(appId + "/" + execId)) {
executors(appId + "/" + execId).kill()
executors -= appId + "/" + execId
}
masterLock.synchronized {
master ! ExecutorStateChanged(appId, execId, ExecutorState.FAILED, None, None)
}
}
}
}
在资源分配过程中需要注意到的是如果有多个Driver Application处于等待状态,资源分配的原则是FIFO,先到先得。
worker中上报的资源最终被driver application中提交的job task所占用,如果application结束(包括正常和异常退出),application所占用的资源就应该被顺利回收,即将占用的资源重新归入可分配资源行列。
现在的问题转换成Master和Executor如何知道Driver Application已经退出了呢?
有两种不同的处理方式,一种是先道别后离开,一种是不告而别。现分别阐述。
何为先道别后离开,即driver application显式的通知master和executor,任务已经完成了,我要bye了。应用程序显式的调用SparkContext.stop
def stop() {
postApplicationEnd()
ui.stop()
// Do this only if not stopped already - best case effort.
// prevent NPE if stopped more than once.
val dagSchedulerCopy = dagScheduler
dagScheduler = null
if (dagSchedulerCopy != null) {
metadataCleaner.cancel()
cleaner.foreach(_.stop())
dagSchedulerCopy.stop()
taskScheduler = null
// TODO: Cache.stop()?
env.stop()
SparkEnv.set(null)
ShuffleMapTask.clearCache()
ResultTask.clearCache()
listenerBus.stop()
eventLogger.foreach(_.stop())
logInfo("Successfully stopped SparkContext")
} else {
logInfo("SparkContext already stopped")
}
}
显式调用SparkContext.stop的一个主要功能是会去显式的停止Executor,具体下达StopExecutor指令的代码见于CoarseGrainedSchedulerBackend中的stop函数
override def stop() {
stopExecutors()
try {
if (driverActor != null) {
val future = driverActor.ask(StopDriver)(timeout)
Await.ready(future, timeout)
}
} catch {
case e: Exception =>
throw new SparkException("Error stopping standalone scheduler‘s driver actor", e)
}
}
那么Master又是如何知道Driver Application退出的呢?这要归功于Akka的通讯机制了,当相互通讯的任意一方异常退出,另一方都会收到DisassociatedEvent, Master也就是在这个消息处理中移除已经停止的Driver Application。
case DisassociatedEvent(_, address, _) => {
// The disconnected client could‘ve been either a worker or an app; remove whichever it was
logInfo(s"$address got disassociated, removing it.")
addressToWorker.get(address).foreach(removeWorker)
addressToApp.get(address).foreach(finishApplication)
if (state == RecoveryState.RECOVERING && canCompleteRecovery) { completeRecovery() }
}
不告而别的方式下Executor是如何知道自己所服务的application已经顺利完成使命了呢?道理和master的一样,还是通过DisassociatedEvent来感知。详见CoarseGrainedExecutorBackend中的receive函数
case x: DisassociatedEvent =>
logError(s"Driver $x disassociated! Shutting down.")
System.exit(1)
由于Master和Worker之间的心跳机制,如果worker异常退出, Master会由心跳机制感知到其消亡,进而将其上报的资源移除。
Executor异常退出时,Worker中的监控线程ExecutorRunner会立即感知,进而上报给Master,Master会回收资源,并重新要求worker启动executor。
Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放,布布扣,bubuko.com
Apache Spark源码走读之19 -- standalone cluster模式下资源的申请与释放
原文:http://www.cnblogs.com/hseagle/p/3858694.html