首页 > 系统服务 > 详细

初识机器学习——吴恩达《Machine Learning》学习笔记(六)

时间:2018-07-23 21:09:14      阅读:316      评论:0      收藏:0      [点我收藏+]

Logistic回归

分类(Classification)

如垃圾邮件和非垃圾邮件、肿瘤的良性和恶性等,分类一般有二分类以及多分类问题。

0,一般解析为没有某样东西;1,一般解析为拥有某样东西。至于正类和负类,视具体情况而分。

不推荐将线性回归用于分类问题。

Logistic回归,介于0和1之间,视为一种"分类算法"。

技术分享图片

假设陈述(Hypothesis Representation)

Logistic回归模型

技术分享图片

 

P(y=1|x;o)表示当x=o时,y=1的概率,P(y=1|x;o) + P(y=0|x;o) = 1,即P(y=0|x;o) = 1 - P(y=1|x;o)

决策界限(Decision boundary)

决策边界的概念,决策边界是假设函数的属性,而不是数据集的特征。因为一开始选择Sigmoid函数的时候,函数里面就带了边界特征。

技术分享图片

 

代价函数(Cost Function) 

对于logistic回归,之前线性回归的代价函数已经不能再适用了。因为经过代换后的代价函数,是一个非凸函数,难以找到全局最优解。因此,需要更换代价函数。重新定义代价函数,使其为凸函数,以便使用梯度下降法求最优。

Logistic回归的代价函数及y=1时的函数图像

技术分享图片

Logistic回归的代价函数及y=0时的函数图像

技术分享图片

简化代价函数与梯度下降(Simplified cost function and gradient descent)

Logistic回归代价函数的简化

技术分享图片

跟线性回归一样,可以使用特征缩放,对Logistic回归进行缩放

技术分享图片

高级优化(Advanced optimization)

梯度下降算法并不是唯一的寻求最优解的算法,还有高级优化算法,如共轭梯度算法(Gradient descent)、BFGS、L-BFGS,他们的优点是:不需要手动选择学习率,比梯度下降法更加快,缺点是:更加地复杂。

技术分享图片

 

使用Octave调用高级优化算法

技术分享图片

步骤解析

技术分享图片

多元分类:一对多(Multi-class classification One-vs-all)

把m个分类中每个类别看做与其他类别不同,做二元分类

技术分享图片

初识机器学习——吴恩达《Machine Learning》学习笔记(六)

原文:https://www.cnblogs.com/haifengbolgs/p/9325732.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!