首页 > 其他 > 详细

欧拉回路与欧拉路径

时间:2018-07-24 12:14:22      阅读:153      评论:0      收藏:0      [点我收藏+]
定义:
欧拉回路:每条边恰好只走一次,并能回到出发点的路径

欧拉路径:经过每一条边一次,但是不要求回到起始点
 
欧拉回路存在性的判定:

一、无向图
每个顶点的度数都是偶数,则存在欧拉回路。

二、有向图(所有边都是单向的)
每个节顶点的入度都等于出度,则存在欧拉回路。

欧拉路径存在性的判定:

一。无向图
一个无向图存在欧拉路径,当且仅当   该图所有顶点的度数为偶数   或者  除了两个度数为奇数外其余的全是偶数。

二。有向图
一个有向图存在欧拉路径,当且仅当 该图所有顶点的度数为零     或者 一个顶点的度数为1,另一个度数为-1,其他顶点的度数为0。

欧拉回路与欧拉路径

原文:https://www.cnblogs.com/WTSRUVF/p/9359239.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!