首页 > 其他 > 详细

Spark:求出分组内的TopN

时间:2018-07-25 00:37:48      阅读:240      评论:0      收藏:0      [点我收藏+]

制作测试数据源:

c1 85
c2 77
c3 88
c1 22
c1 66
c3 95
c3 54
c2 91
c2 66
c1 54
c1 65
c2 41
c4 65

spark scala实现代码:

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

object GroupTopN1 {
  System.setProperty("hadoop.home.dir", "D:\\Java_Study\\hadoop-common-2.2.0-bin-master")

  case class Rating(userId: String, rating: Long)

  def main(args: Array[String]) {
    val sparkConf = new SparkConf().setAppName("ALS with ML Pipeline")
    val spark = SparkSession
      .builder()
      .config(sparkConf)
      .master("local")
      .config("spark.sql.warehouse.dir", "/")
      .getOrCreate()

    import spark.implicits._
    import spark.sql

    val lines = spark.read.textFile("C:\\Users\\Administrator\\Desktop\\group.txt")
    val classScores = lines.map(line => Rating(line.split(" ")(0).toString, line.split(" ")(1).toLong))

    classScores.createOrReplaceTempView("tb_test")

    var df = sql(
      s"""|select
          | userId,
          | rating,
          | row_number()over(partition by userId order by rating desc) rn
          |from tb_test
          |having(rn<=3)
          |""".stripMargin)
    df.show()

    spark.stop()
  }
}

打印结果:

+------+------+---+
|userId|rating| rn|
+------+------+---+
|    c1|    85|  1|
|    c1|    66|  2|
|    c1|    65|  3|
|    c4|    65|  1|
|    c3|    95|  1|
|    c3|    88|  2|
|    c3|    54|  3|
|    c2|    91|  1|
|    c2|    77|  2|
|    c2|    66|  3|
+------+------+---+

 

Spark:求出分组内的TopN

原文:https://www.cnblogs.com/yy3b2007com/p/9363474.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!