首页 > 其他 > 详细

P1667 数列

时间:2018-07-25 13:41:59      阅读:163      评论:0      收藏:0      [点我收藏+]

题目描述

给定一个长度是n的数列A,我们称一个数列是完美的,当且仅当对于其任意连续子序列的和都是正的。现在你有一个操作可以改变数列,选择一个区间[X,Y]满足Ax +Ax+1 +…+ AY<0,1<X<=Y<n,令S=Ax +Ax+1 +…+ AY,对于Ax-1和AY+1分别加上S,Ax和AY分别减去S(如果X=Y就减两次)。问最少几次这样的操作使得最终数列是完美的。

输入输出格式

输入格式:

 

第一行一个数n,以下n个数。

【数据规模】

对于20%的数据,满足1≤N≤5;

对于100%的数据,满足1≤N≤10^5; 1≤|A[i]|≤2^31-1。

 

输出格式:

 

一个数表示最少的操作次数,如果无解输出-1。

 

输入输出样例

输入样例#1:
5
13
-3 
-4
-5
62
输出样例#1: 
2

说明

【样例解释】

首先选择区间[2,4],之后数列变成1,9,-4,7,50,然后选择[3,3],数列变成1,5,4,3,50

 

Solution:

  本题贼有意思。

  用$s_i$表示$i$的前缀和,那么$s_y-s_{x-1}=T$表示的就是区间$[x,y]$的和,然后我们按照题目中的操作去搞,$a_{x-1}+T,a_{x}-T,a_{y}-T,a_{y+1}+T$,不难发现$s_x,s_y$实际上不变,然后因为$s_y=s_{x-1}+T$则操作等价于交换了$s_{x-1},s_{y}$两值。我们要使得$a_i$均为正数,就得让前缀和单调上升,那么很显然当$s_i\leq 0$或者$s_i=s_j,i\neq j$时无解,由于我们只关心前缀和的大小而非具体的值,所以直接对其离散化,然后就是建边统计一下各个环内的交换次数就好了。

代码:

 

 1 #include<bits/stdc++.h>
 2 #define il inline
 3 #define ll long long
 4 #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
 5 #define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
 6 using namespace std;
 7 const int N=2e5+7;
 8 int n,cnt,ans,to[N],net[N],h[N];
 9 ll *q[N],s[N];
10 bool vis[N];
11 
12 il int gi(){
13     int a=0;char x=getchar();bool f=0;
14     while((x<0||x>9)&&x!=-)x=getchar();
15     if(x==-)x=getchar(),f=1;
16     while(x>=0&&x<=9)a=(a<<3)+(a<<1)+x-48,x=getchar();
17     return f?-a:a;
18 }
19 
20 il bool cmp(const ll *a,const ll *b){return *a < *b;}
21 
22 il void add(int u,int v){to[++cnt]=v,net[cnt]=h[u],h[u]=cnt;}
23 
24 il void dfs(int u){
25     for(int i=h[u];i;i=net[i])
26         if(!vis[to[i]]) vis[to[i]]=1,ans++,dfs(to[i]);
27 }
28 
29 int main(){
30     n=gi();
31     For(i,1,n) {
32         s[i]=s[i-1]+gi(),q[i]=&s[i];
33         if(s[i]<=0)puts("-1"),exit(0);
34     }
35     sort(q+1,q+n+1,cmp);
36     ll lst=-1;
37     For(i,1,n) 
38         if(*q[i]!=lst) lst=*q[i],*q[i]=++cnt;
39         else *q[i]=cnt,puts("-1"),exit(0);
40     For(i,1,n) if(i!=s[i]) add(i,s[i]);
41     For(i,1,n) if(!vis[i]) vis[i]=1,dfs(i);
42     cout<<ans;
43     return 0;
44 }

 

P1667 数列

原文:https://www.cnblogs.com/five20/p/9365392.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!