首页 > 其他 > 详细

pandas基础(3)_数据处理

时间:2018-07-25 21:53:29      阅读:188      评论:0      收藏:0      [点我收藏+]

1:删除重复数据

      使用duplicate()函数检测重复的行,返回元素为bool类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为true

>>> df =DataFrame(np.random.randint(0,150,size=(6,3)),columns=[‘Chinese‘,‘maths‘,‘Chinese‘],index=[‘zhangsan‘,‘lisi‘,‘wangwu‘,‘lisi‘,‘xiaowu‘,‘zhangsan‘])

>>> df

          Chinese  maths  Chinese

zhangsan       17     58       70

lisi           88     20      137

wangwu        130     29       57

lisi           71     20       65

xiaowu        133     60        6

zhangsan       96     48       60

>>> df.duplicated()

zhangsan    False

lisi        False

wangwu      False

lisi        False

xiaowu      False

zhangsan    False

dtype: bool

>>> df =DataFrame(np.random.randint(0,2,size=(6,2)),columns=[‘Chinese‘,‘maths‘],index=[‘zhangsan‘,‘lisi‘,‘wangwu‘,‘lisi‘,‘xiaowu‘,‘zhangsan‘])

>>> df

          Chinese  maths

zhangsan        1      1

lisi            1      0

wangwu          0      0

lisi            1      0

xiaowu          1      1

zhangsan        0      0

>>> df.duplicated ()

zhangsan    False

lisi        False

wangwu      False

lisi         True

xiaowu       True

zhangsan     True

dtype: bool

>>> #如果出现的数据一样,则会返回true

>>> #调用drop_duplicates()可以删除重复的数据

>>> df.drop_duplicates ()

          Chinese  maths

zhangsan        1      1

lisi            1      0

wangwu          0      0

>>> #删除的是行

>>> #rename()函数替换索引

>>> #map():新建一列

>>> #replace()替换元素

2:异常值检测和过滤

>>> #使用describe()函数查看每一列的描述统计量

>>> df =DataFrame(np.random.randint(0,150,size=(6,2)),columns=[‘Chinese‘,‘maths‘],index=[list(‘ABCDEF‘)])

>>> df

   Chinese  maths

A      119     25

B       28     33

C       10    134

D       44    121

E       44    119

F       91     46

>>> df.describe ()

          Chinese       maths

count    6.000000    6.000000

mean    56.000000   79.666667#平均值

std     40.943864   50.014665

min     10.000000   25.000000

25%     32.000000   36.250000

50%     44.000000   82.500000

75%     79.250000  120.500000

max    119.000000  134.000000

>>> #std是标准方差

>>> df.std ()

Chinese    40.943864

maths      50.014665

dtype: float64

>>> df.std(axis=1)

A    66.468037

B     3.535534

C    87.681241

D    54.447222

E    53.033009

F    31.819805

dtype: float64

>>> #每个人的标准差

>>> np.abs(df)>df.std()*2

   Chinese  maths

A     True  False

B    False  False

C    False   True

D    False   True

E    False   True

F     True  False

>>> #当某个方差大于标准方差的2倍时认为这两个数特殊,返回true,这时筛选出来

>>> df.any(axis=1)

A    True

B    True

C    True

D    True

E    True

F    True

dtype: bool

>>> df2=np.abs(df)>df.std()*2

>>> df3=df2.any(axis=1)

>>> df[df3]

   Chinese  maths

A      119     25

C       10    134

D       44    121

E       44    119

F       91     46

>>> df2=np.abs(df)>df.std()*2

>>> df2

   Chinese  maths

A     True  False

B    False  False

C    False   True

D    False   True

E    False   True

F     True  False

>>> df2.any()

Chinese    True

maths      True

dtype: bool

>>> df2.all()

Chinese    False

maths      False

dtype: bool

>>> df3=df2.any(axis=1)

>>> df3

A     True

B    False

C     True

D     True

E     True

F     True

dtype: bool

>>> df[df3]

   Chinese  maths

A      119     25

C       10    134

D       44    121

E       44    119

F       91     46

3:随机排序

>>> x=np.random.permutation (6)

>>> x

array([4, 5, 1, 0, 3, 2])

>>> df.take(x)

   Chinese  maths

E       44    119

F       91     46

B       28     33

A      119     25

D       44    121

C       10    134

>>> #使用take(函数排序,可以借助np.random.pemutation()函数随机排序,可以用来随机抽样

4:数据聚合

>>> #通常是每一个数组生成一个具体的值

>>> #1分组 2用函数处理  3合并

>>> #核心函数groupby()

>>> df = DataFrame({‘item‘:[‘apple‘,‘banana‘,‘orange‘,‘banana‘,‘orange‘,‘apple‘],‘price‘:[4,3,3,2.5,4,2],‘color‘:[‘red‘,‘yellow‘,‘yellow‘,‘green‘,‘green‘,‘green‘]})

>>> df

    color    item  price

0     red   apple    4.0

1  yellow  banana    3.0

2  yellow  orange    3.0

3   green  banana    2.5

4   green  orange    4.0

5   green   apple    2.0

>>> df.groupby(‘item‘)

<pandas.core.groupby.DataFrameGroupBy object at 0x000000000E8EE240>

>>> g=df.groupby(‘item‘)

>>> g

<pandas.core.groupby.DataFrameGroupBy object at 0x000000000E76A828>

>>> g.groups

{‘orange‘: Int64Index([2, 4], dtype=‘int64‘), ‘apple‘: Int64Index([0, 5], dtype=‘int64‘), ‘banana‘: Int64Index([1, 3], dtype=‘int64‘)}

>>> #分组

>>> g[‘price‘].mean ()

item

apple     3.00

banana    2.75

orange    3.50

Name: price, dtype: float64

>>> m=g[‘price‘].mean ()

>>> type(m)

<class ‘pandas.core.series.Series‘>

>>> df_mean=DataFrame(m)

>>> df_mean

        price

item         

apple    3.00

banana   2.75

orange   3.50

>>> pd.merge(df,df_mean,left_on=‘item‘,right_index=True)

    color    item  price_x  price_y

0     red   apple      4.0     3.00

5   green   apple      2.0     3.00

1  yellow  banana      3.0     2.75

3   green  banana      2.5     2.75

2  yellow  orange      3.0     3.50

4   green  orange      4.0     3.50

>>> #以多个属性进行分组

>>> df.groupby([‘color‘,‘item‘]).sum()

                     price

color  item         

green  apple     2.0

           banana    2.5

           orange    4.0

red      apple     4.0

yellow  banana    3.0

           orange    3.0

>>> #最终变成了多重索引结构

pandas基础(3)_数据处理

原文:https://www.cnblogs.com/henuliulei/p/9368350.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!