简单记一下做法:
1.算法流程:两式的系数表达转化为点值表达(O(nlogn))->利用点值表达使两式相乘(O(n))->将结果的点值表达转化回系数表达(O(nlogn))
2.做法:
$$目标:把一个n项多项式F(x)=\sum_{i=0}^{n-1}a_ix^i转化为\{(w^k_n,y_k)\}的点值表达,其中w^k_n为n次单位根的k次方$$
不妨设n为2的幂次,如果不是,则可以补上系数为0的高次项
$$将a_ix^i按照幂次奇偶性分组,得到F(x)=(a_0x^0+a_2x^2+...+a_{n-2}x^{n-2})+(a_1x^1+a_3x^3..a_{n-1}x^{n-1})$$
$$设F_0(x)=a_0x^0+a_2x^1+a_4x^2+...+a_{n-2}x^{frac{n}{2}-1} , F_1(x)=a_1x^0+a_3x^1+a_5x^2+...+a_{n-1}x^{frac{n}{2}-1}$$
$$则F(x)=F_0(x^2)+xF_1(x^2)$$
$$带入n次单位根,F(w^k_n)=F_0(w^{2k}_n)+w^k_nF_1(w^{2k}_n)$$
$$w^{xk}_{xn}=w^k_n ==> F(w^k_n)=F_0(w^k_{\frac{n}{2}})+w^k_nF_1(w^k_{\frac{n}{2}}) $$
$$w^{k}_{n}=-w^{k+\frac{n}{2}}_n ==> F(w^{k+\frac{n}{2}}_n)=F_0(w^k_{\frac{n}{2}})-w^k_nF_1(w^k_{\frac{n}{2}}) $$
剩下明天写(2018-07-25)
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #include<cmath> 5 #define LL long long int 6 using namespace std; 7 const int maxn=2097152; 8 const double Pi=acos(-1); 9 10 LL rd(){ 11 LL x=0;int neg=1;char c=getchar(); 12 while(c<‘0‘||c>‘9‘){if(c==‘-‘) neg=-1;c=getchar();} 13 while(c>=‘0‘&&c<=‘9‘) x=x*10+c-‘0‘,c=getchar(); 14 return x*neg; 15 } 16 17 struct Complex{ 18 double x,y; 19 Complex(double x0=0,double y0=0){x=x0,y=y0;} 20 }A[maxn],B[maxn]; 21 Complex operator * (Complex a,Complex b){return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} 22 Complex operator + (Complex a,Complex b){return Complex(a.x+b.x,a.y+b.y);} 23 Complex operator - (Complex a,Complex b){return Complex(a.x-b.x,a.y-b.y);} 24 int rev[maxn],N,M,len=1; 25 26 void fft(Complex *a,int opt){ 27 for(int i=0;i<len;i++){ 28 if(i<rev[i]) swap(a[i],a[rev[i]]); 29 } 30 for(int i=1;i<len;i<<=1){ 31 Complex wn=Complex(cos(Pi/i),opt*sin(Pi/i)); 32 int step=i<<1; 33 for(int j=0;j<len;j+=step){ 34 Complex w=Complex(1,0); 35 for(int k=0;k<i;k++,w=w*wn){ 36 Complex x=a[j+k]; 37 Complex y=w*a[j+k+i]; 38 a[j+k]=x+y; 39 a[j+k+i]=x-y; 40 } 41 } 42 } 43 } 44 45 int main(){ 46 int i,j,k; 47 N=rd()+1,M=rd()+1; 48 for(i=0;i<N;i++) A[i].x=rd(); 49 for(i=0;i<M;i++) B[i].x=rd(); 50 k=0;while(len<N+M-1) len<<=1,k++; 51 for(i=0;i<len;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1)); 52 fft(A,1);fft(B,1); 53 for(i=0;i<len;i++) A[i]=A[i]*B[i]; 54 fft(A,-1); 55 for(i=0;i<N+M-1;i++){ 56 printf("%d ",(int)(A[i].x/len+0.5)); 57 } 58 return 0; 59 }
原文:https://www.cnblogs.com/Ressed/p/9368463.html