思路:打表可以看出是卡特兰数,但是模数不一定是素数,所以需要分解一下因数。
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> using namespace std; const int N = 2e6 + 7; const int M = 1e5 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 +7; int n, MOD, tot, p[N], mn[N], cnt[N]; LL fastPow(LL a, LL b) { LL ans = 1; while(b) { if(b & 1) ans = ans * a % MOD; a = a * a % MOD; b >>= 1; } return ans; } void init() { for(int i = 2; i <= 2 * n; i++) { if(mn[i]) continue; p[++tot] = i; mn[i] = tot; for(int j = 2 * i; j <= 2 * n; j += i) { if(!mn[j]) { mn[j] = tot; } } } } void getCnt(int x, int op) { while(x != 1) { cnt[p[mn[x]]] += op; x /= p[mn[x]]; } } int main() { scanf("%d%d", &n, &MOD); init(); for(int i = 2; i <= 2 * n; i++) getCnt(i, 1); for(int i = 2; i <= n; i++) getCnt(i, -1); for(int i = 2; i <= n + 1; i++) getCnt(i, -1); LL ans = 1; for(int i = 2; i <= 2 * n; i++) ans = ans * fastPow(i, cnt[i]) % MOD; printf("%lld\n", ans); return 0; } /* */
原文:https://www.cnblogs.com/CJLHY/p/9380574.html