首页 > 编程语言 > 详细

C++11 线程并发

时间:2018-07-31 01:21:51      阅读:193      评论:0      收藏:0      [点我收藏+]

并发 头文件<future> <thread>

高级接口

async()、future<>


future<int> result1; //int为func1返回值
result1 = async(func1); //启动func1,但有可能被推迟,直到调用get或wait


future<int> result1(async(func1));


result1.get();//获得返回值

 

async()的参数可以是函数、成员函数、函数对象或lambda

async([]{})

//绝不推迟
future<int> result1 = async(lunch::async, func1);

//强制延缓,直到调用f.get()或f.wait()
future<int> f(async(lunch::deferred, func1));

auto f1 = sync(lunch::deferred, task1);
auto f2 = sync(lunch::deferred, task2);

auto val = b?f1.get():f2.get();

 


auto f1 = async(task1);

try
{
f1.get();
}
catch (exception* e)
{
cerr << "EXCEPTION: " << e->what() << endl;
}


一个future<>只能被调用get()一次,之后future就处于无效状态,
这种状态可调用valid()来检测,

只要对future调用wait(),就可以强制启动该future象征的线程并等待这一后台操作终止
future<...> f(asybc(func));
...
f.wait();

f.wait_for(seconds(10));
f.wait_until(system_clock::now()+chrono::minutes(1));

不论wait_for()或wait_until()都可以返回一下三种东西之一:
1.future_status::deferred
如果async()延缓了操作而程序中又完全没有调用wait()或get()
2.future_status::timeout
如果某个操作被异步启动但尚未结束,而waiting又已逾期
3.future_status::ready
操作已完成


future<...> f(async(task));
如果在单线程环境,有可能延缓而没有启动
所以先检查

if (f.wait_for(chrono::seconds(0)) != future_status::deferred){
while (f.wait_for(chrono::seconds(0)) != future_status::ready)){
...
this_thread::yeild();
//或this_thread::sleep_for(milliseconds(100));
}
}
...
auto r = f.get();

 

例子:

#include <chrono>
#include <iostream>
#include <future>
#include <thread>
#include <random>
#include <exception>

using namespace std;
using namespace std::chrono;

int doSomething(char c)
{
default_random_engine dre(c);
uniform_int_distribution<int> id(10, 1000);

for (int i = 0; i < 10; ++i)
{
this_thread::sleep_for(milliseconds(id(dre)));
cout.put(c).flush();
}

return c;
}

int main()
{
auto f1 = async([]{doSomething(‘.‘); });
auto f2 = async([]{doSomething(‘+‘); });

if (f1.wait_for(seconds(0)) != future_status::deferred ||
f2.wait_for(seconds(0)) != future_status::deferred)
{
while (f1.wait_for(seconds(0)) != future_status::ready &&//有一个线程完成就跳出循环
f2.wait_for(seconds(0)) != future_status::ready)
{
this_thread::yield();//提示重新安排到下一个线程
}
}
cout.put(‘\n‘).flush();

try {
f1.get();
f2.get();
}
catch (const exception& e){
cout << "\nException: " << e.what() << endl;
}
cout << "\ndone" << endl;

}


传递实参

上例使用了lambda并让它调用后台函数
auto f1 = async([]{doSomething(‘.‘); });

也可以传递async语句之前就存在的实参
char c = ‘@‘;
auto f1 = async([=]{doSomething(c); });

[=]表示传递给lambda的是c的拷贝

char c = ‘@‘;
//传递c的拷贝
auto f1 = async([=]{doSomething(c); });
auto f1 = async(doSomething, c);

//传递c的引用
auto f1 = async([&]{doSomething(c); });
auto f1 = async(doSomething, ref(c));


如果使用async,就应该以值传递方式来传递所有用来处理目标函数的必要object,
使async只需使用局部拷贝


调用成员函数
class X
{
public:
void mem(int num){ cout << "memfunc: " << num << endl; };
};

int main()
{
X x;
auto f = async(&X::mem, x, 42); //x.mem(42);
f.get();
}
传给async一个成员函数的pointer,之后的第一个实参必须是个reference或pointer,指向某个object

 


多次处理
shared_future 可多次调用get()

 

int queryNum()
{
cout << "read number: ";
int num;
cin >> num;

if (!cin)
{
throw runtime_error("no number read");
}
return num;
}

void doSomething1(char c, shared_future<int> f)
{
try{
int num = f.get();

for (int i = 0; i < num; ++i)
{
this_thread::sleep_for(chrono::milliseconds(100));
cout.put(c).flush();
}
}
catch (const exception& e)
{
cerr << "EXCEPTION in thread " << this_thread::get_id() << ": " << e.what() << endl;
}
}

int main()
{
try{
shared_future<int> f = async(queryNum);

auto f1 = async(launch::async, doSomething1, ‘.‘, f);
auto f2 = async(launch::async, doSomething1, ‘+‘, f);
auto f3 = async(launch::async, doSomething1, ‘*‘, f);

f1.get();
f2.get();
f3.get();
}
catch (const exception& e){
cout << "\nEXCEPTION: " << e.what() << endl;
}
cout << "\ndone" << endl;
}


确保f的寿命不短于被启动的线程

 

低层接口
Thread 和 Promise


std::thread

void doSomething();

thread t(doSomething); //启动
...
t.join();//等待结束

t.detach();//卸载

cout << thread::hardware_concurrency() << endl; //CPU线程个数

和async相比
1.没有所谓发射策略,试着将目标函数启动与一个新线程中,如果无法做到会抛出system_error,并带有错误码resource_unavailable_try_again
2.没有接口处理线程结果,唯一可获得的是一个独一无二的线程ID
3.如果发生异常,但未捕捉于线程之内,程序会立刻中止并调用terminate()
4.你必须声明是否想要等待线程结束(join)
或打算将它自母体卸载使它运行与后台而不受任何控制(detach)
如果你在thread object寿命结束前不这么做,或如果它发生了一次move assignment,
程序会中止并调用terminate()
4.如果你让线程运行于后台而main结束了,所有线程会被鲁莽而硬性地终止

 


Detached Thread(卸离后的线程)

一般性规则:
Detached Thread应该宁可只访问local copy
。。。


Thread ID

this_thread::get_id()

thread t(doSomething2, 5, ‘.‘);
t.get_id()

thread::id(); //默认构造,生成一个独一无二的ID用来表现 no thread

 

Promise

void doSomething3(promise<string>& p)
{
try{
cout << "read char (‘x‘ for exception): ";
char c = cin.get();
if (c == ‘x‘){
throw runtime_error(string("char ") + c + " read");
}
string s = string("char ") + c + " processed";
p.set_value(move(s));//存放一个值
//p.set_value_at_thread_exit(move(s));//线程结束时存放
}
catch (...){
p.set_exception(current_exception());//存放一个异常
//p.set_exception_at_thread_exit(current_exception());
}
}

int main()
{
try {
promise<string> p;
thread t(doSomething3, ref(p));//传入一个promise引用
t.detach();

future<string> f(p.get_future());//get_future取出值

cout << "result: " << f.get() << endl;//取得存储结果//get会停滞,直到p.set_value
}
catch (const exception& e){
cerr << "EXCEPTION: " << e.what() << endl;
}
catch (...){
cerr << "EXCEPTION " << endl;
}
}


this_thread

this_thread::get_id()
this_thread::sleep_for(duration)
this_thread::sleep_until(timepoint)
this_thread::yeild() //建议释放控制以便重新调度,让下一个线程能够执行


当心 Concurrency (并发)

多个线程并发处理相同数据而又不曾同步化,那么唯一安全的情况就是:所有线程只读取数据

除非另有说明,c++标准库提供的函数通常不支持读或写动作与另一个写动作(写至同一笔数据)并发执行

Mutex 和 Lock


mutex

mutex valMutex;


valMutex.lock();
++val;
valMutex.unlock();


lock_guard:

{
//lock、析构函数自动释放lock(unlock) (加一个大括号使其更快释放)
lock_guard<mutex> lg(valMutex);
++val;
}


//recursive_mutex 允许同一线程多次锁定,并在最近一次(last)相应的unlock时释放lock
recursive_mutex dbMutex;
lock_guard<recursive_mutex> lg(dbMutex);

 

尝试性的Lock

mutex m;
//试图获得一个lock,成功返回true,为了仍能够使用lock_guard,要额外传入实参 adopt_lock
//有可能假性失败,lock为被他人拿走也可能失败返回false
while (m.try_lock() == false)
{
//doSomeOtherStuff();
}

lock_guard<mutex> lg1(m, adopt_lock);


timed_mutex m1; //recursive_timed_mutex
//if (m1.try_lock_until(system_clock::now() + chrono::seconds(1)))
if (m1.try_lock_for(chrono::seconds(1))){
lock_guard<timed_mutex> lg2(m1, adopt_lock);
}
else
{
//couldNotGetTheLock();
}


处理多个Lock,易发生互锁,死锁
使用全局函数lock解决

mutex

mutex m1;
mutex m2;
{
//lock会阻塞,直到所有mutex被锁定或出现异常
lock(m1, m2);
//成功锁定后使用lock_guard,以adopt_lock作为第二实参,确保这些mutex在离开作用域时解锁
lock_guard<mutex> lockM2(m1, adopt_lock);
lock_guard<mutex> lockM3(m2, adopt_lock);
//...
}//自动unlock

//或者使用try_lock,取得所有lock时返回-1,否则返回第一失败的lock的索引且其它成功的会unlock
int idx = try_lock(m1, m2);
if (idx < 0)
{
lock_guard<mutex> lockM2(m1, adopt_lock);
lock_guard<mutex> lockM3(m2, adopt_lock);
//...
}//自动unlock
else
{
cerr << "could not lock mutex m" << idx + 1 << endl;
}

//使用lock、try_lock后使用adopt_lock过继给lock_guard才能自动解锁

 


只调用一次

once_flag oc;
call_once(oc, initialize);//保证initialize函数只调用一次

once_flag oc1;
call_once(oc1, []{staticData = initializeStaticData(); });

class X
{
private:
mutable once_flag initDataFlag;
void initData()const;
public:
int GetData()const{
call_once(initDataFlag, &X::initData, this);
//...
}
};


Condition Variable(条件变量) <condition_variable>

future从某线程传递数据到另一线程只能一次,且future的主要目的是处理线程的返回值或异常

条件变量可用来同步化线程之间的数据流逻辑依赖关系


使用ready flag(一个bool变量)让某线程等待另一线程是一个粗浅办法
while (!readyFlag){
//...
this_thread::yeild();
}
消耗宝贵的CPU时间重复检查flag,
此外很难找出适当的sleep周期,
2次检查间隔太短则仍旧浪费CPU时间于检查动作上,太长则会发生延误

一个较好的做法是使用条件变量,使一个线程可以唤醒一或多个其他等待中的线程

包含<mutex> <condition_variable>

mutex readyMutex;
condition_variable readyCondVar;

//激发的条件终于满足的线程(或多线程之一)必须调用
readyCondVar.notify_one();
//或
readyCondVar.notify_all();
//等待条件满足的线程必须调用
unique_lock<mutex> l(readyMutex);
readyCondVar.wait(l);


但是有可能出现假醒,即wait在condition varibale尚未被notified时便返回
假醒无法被预测,实质上是随机的
在wakeup之后你仍需要代码去验证条件实际已达成,
例如必须检查数据是否真正备妥,或仍需要诸如ready flag之类的东西


#include <condition_variable>
#include <mutex>
#include <future>
#include <iostream>
using namespace std;

bool readyFlag; //表示条件真的满足了
mutex readyMutex;
condition_variable readyCondVar;

void thread1()
{
cout << "<return>" << endl;
cin.get();
{
lock_guard<mutex> lg(readyMutex);
readyFlag = true;
}
readyCondVar.notify_one();
}

void thread2()
{
{//这里必须使用unque_lock,不可使用lock_guard,因为wait的内部会明确地对mutex进行解锁和锁定
unique_lock<mutex> ul(readyMutex);
//lambda当做第二实参,用来检查条件是否真的满足,直到返回true
readyCondVar.wait(ul, []{return readyFlag; });
//相当于
//while (!readyFlag){
// readyCondVar.wait(ul);
//}
}
cout << "done" << endl;
}

int main()
{
auto f1 = async(launch::async, thread1);
auto f2 = async(launch::async, thread2);

f1.wait();
f2.wait();
}


例子

std::queue<int> queue1;//并发使用,被一个mutex和一个condition variable保护着
mutex queueMutex;
condition_variable queueCondVar;

void provider(int val)
{
for (int i = 0; i < 6; ++i)
{
{
lock_guard<mutex> ul(queueMutex);
queue1.push(val + i);
}
queueCondVar.notify_one();
this_thread::sleep_for(chrono::milliseconds(val));
}
}

void consumer(int num)
{
while (true)
{
int val;
{
unique_lock<mutex> ul(queueMutex);
queueCondVar.wait(ul, []{return !queue1.empty(); });
val = queue1.front();
queue1.pop();
cout << "consumer" << num << ": " << val << endl;

//使用wait_for wait_until则要判断返回值
//if (queueCondVar.wait_for(ul, chrono::seconds(1), []{return !queue1.empty(); }))
//if (queueCondVar.wait_for(ul, chrono::seconds(1)) == cv_status::no_timeout)//这个没有判断readyFlag
//{
// val = queue1.front();
// queue1.pop();
// cout << "consumer" << num << ": " << val << endl;
//}
}

}
}


int main()
{
auto p1 = async(launch::async, provider, 100);
auto p2 = async(launch::async, provider, 300);
auto p3 = async(launch::async, provider, 500);

auto c1 = async(launch::async, consumer, 1);
auto c2 = async(launch::async, consumer, 2);

//c1.wait();
getchar();
exit(0);
}

 

atomic

即使基本数据类型,读写也不是atomic(不可切割的),readyFlag可能读到被写一半的bool
编译器生成的代码有可能改变操作次序

借由mutex可解决上述2个问题,但从必要的资源和潜藏的独占访问来看,
mutex也许是个相对昂贵的操作,所以也许值得以atomic取代mutex和lock


atomic<bool> readyFlag(false);

void thread1()
{
//...
readyFlag.store(true);//赋予一个新值
}

void thread2()
{
while (!readyFlag.load())//取当前值
{
this_thread::sleep_for(chrono::milliseconds(100));
}
//...
}


void provider()
{
while (true)
{
cout << "<return>" << endl;
char arr[100];
cin.getline(arr, 100);

data = 42;
readyFlag.store(true);
}
}

void consumer()
{
while (true)
{
while (!readyFlag.load()){
cout.put(‘.‘).flush();
this_thread::sleep_for(chrono::milliseconds(50));
}
cout << "\nvalue : " << data << endl;
readyFlag = false;
}

}

int main()
{
auto p = async(launch::async, provider);
auto c = async(launch::async, consumer);

c.wait();
}

 

atomic<int> ai(0);
int x = ai;
ai = 10;
ai++;
ai -= 17;

atomic<int> a;
atomic_init(&a, 0);//没有初始化则使用这个函数进行初始化

 

 

#include "stdafx.h"

//#include <memory>
#include <chrono>
#include <ctime>
#include <string>
#include <iostream>
#include <future>
#include <thread>
#include <random>
#include <exception>
#include <vector>


using namespace std;
using namespace std::chrono;

int doSomething(/*const char&*/char c)
{
	default_random_engine dre(c);
	uniform_int_distribution<int> id(10, 1000);

	for (int i = 0; i < 10; ++i)
	{
		this_thread::sleep_for(milliseconds(id(dre)));
		cout.put(c).flush();
	}

	return c;
}

int func1()
{
	return doSomething(‘.‘);
}

int func2()
{
	return doSomething(‘+‘);
}
#include <list>
void task1()
{
	list<int> v;
	while (true)
	{
		for (int i = 0; i < 1000000; ++i)
		{
			v.push_back(i);
		}
		cout.put(‘.‘).flush();
	}
}

#if 0
int quickComputation();		//快速直接 quick and dirty
int accurateComputation();	//精确但是慢

future<int> f;

int bestResultInTime()
{
	auto tp = chrono::system_clock::now() + chrono::minutes(1);

	f = async(launch::async, accurateComputation);
	int guess = quickComputation();

	future_status s = f.wait_until(tp);	//等待

	if (s == future_status::ready)	//完成
	{
		return f.get();
	} 
	else
	{
		return guess;
	}
}
#endif 

#if 0
int main()
{
	//传递实参
	//auto f1 = async([]{ doSomething(‘.‘); });
	char c = ‘@‘;
	//传递c的拷贝
	//auto f1 = async([=]{ doSomething(c); });	
	//auto f1 = async(doSomething, c);

	//传递c的引用
	//auto f1 = async([&]{ doSomething(c); });//这个需要把doSomething(const char& c) ???
	auto f1 = async( doSomething, ref(c));


	auto f2 = async([]{ doSomething(‘+‘); });

	c = ‘_‘;

	if (f1.wait_for(seconds(0)) != future_status::deferred ||
		f2.wait_for(seconds(0)) != future_status::deferred)
	{
		while (f1.wait_for(seconds(0)) != future_status::ready &&	//有一个线程完成就跳出循环
				f2.wait_for(seconds(0)) != future_status::ready)
		{
			this_thread::yield();//提示重新安排到下一个线程
		}
	}
	
	cout.put(‘\n‘).flush();

	try {
		f1.get(); //一个future只能调用一次get,之后future处于无效状态
		f2.get();
	}
	catch (const exception& e){
		cout << "\nException: " << e.what() << endl;
	}
	cout << "\ndone" << endl;

	//cout << f1._Get_value() << endl; //相当于
	cout << f1._Is_ready() << endl;
	cout << f1.valid() << endl;
}
#endif // 0

#if 0
class X
{
public:
	void mem(int num){ cout << "memfunc: " <<  num << endl; };
};

int main()
{
	X x;
	auto f = async(&X::mem, x, 42); //x.mem(42);
	f.get();
}
#endif // 0


#if 0

int queryNum()
{
	cout << "read number: ";
	int num;
	cin >> num;

	if (!cin)
	{
		throw runtime_error("no number read");
	}
	return num;
}

void doSomething1(char c, shared_future<int> f)
{
	try{
		int num = f.get();

		for (int i = 0; i < num; ++i)
		{
			this_thread::sleep_for(chrono::milliseconds(100));
			cout.put(c).flush();
		}
	}
	catch (const exception& e)
	{
		cerr << "EXCEPTION in thread " << this_thread::get_id() << ": " << e.what() << endl;
	}
}

int main()
{
	try{
		shared_future<int> f = async(queryNum);

		auto f1 = async(launch::async, doSomething1, ‘.‘, f);
		auto f2 = async(launch::async, doSomething1, ‘+‘, f);
		auto f3 = async(launch::async, doSomething1, ‘*‘, f);

		f1.get();
		f2.get();
		f3.get();
	}
	catch (const exception& e){
		cout << "\nEXCEPTION: " << e.what() << endl;
	}
	cout << "\ndone" << endl;
}
#endif // 0

#include <thread>

#if 0
void doSomething2(int num, char c)
{
	try {
		default_random_engine dre(42 * c);
		uniform_int_distribution<int> id(10, 1000);
		for (int i = 0; i < num; ++i)
		{
			this_thread::sleep_for(milliseconds(id(dre)));
			cout.put(c).flush();
		}
	}
	catch (...){
		cerr << "THREAD-EXCEPTION (thread " << this_thread::get_id() << ")" << endl;
	}
}

int main()
{
	try {
		thread t1(doSomething2, 5, ‘.‘);
		cout << "- start fg thread " << t1.get_id() << endl;

		for (int i = 0; i < 5; ++i)
		{
			thread t(doSomething2, 10, ‘a‘ + i);
			cout << "-detach start bg thread " << t.get_id() << endl;
			t.detach();
		}
		cin.get();
		cout << "- join fg thread " << t1.get_id() << endl;
		t1.join();
	}
	catch (const exception& e){
		cerr << "EXCEPTION: " << e.what() << endl;
	}
}
#endif // 0


#if 0
void doSomething3(promise<string>& p)
{
	try{
		cout << "read char (‘x‘ for exception): ";
		char c = cin.get();
		if (c == ‘x‘){
			throw runtime_error(string("char ") + c + " read");
		}
		string s = string("char ") + c + " processed";
		p.set_value(move(s));//存放一个值
		//p.set_value_at_thread_exit(move(s));//线程结束时存放
	}
	catch (...){
		p.set_exception(current_exception());//存放一个异常
		//p.set_exception_at_thread_exit(current_exception());
	}
}

int main()
{
	try {
		promise<string> p;
		thread t(doSomething3, ref(p));//传入一个promise引用
		t.detach();

		future<string> f(p.get_future());//get_future取出值

		cout << "result: " << f.get() << endl;//取得存储结果//get会停滞,直到p.set_value
	}
	catch (const exception& e){
		cerr << "EXCEPTION: " << e.what() << endl;
	}
	catch (...){
		cerr << "EXCEPTION " << endl;
	}
}
#endif // 0

mutex printMutex;
void print(const string& s)
{
	lock_guard<mutex> l(printMutex);
	for (char c : s)
	{
		cout.put(c);
	}
	cout << endl;
}

int initialize()
{
	return 0;
}
vector<string> initializeStaticData()
{
	vector<string> staticData;
	return staticData;
}

vector<string> staticData;

#if 0

int main()
{
 	auto f1 = async(launch::async, print, "Hello from a first thread");
 	auto f2 = async(launch::async, print, "Hello from a second thread");
 	print("Hello from the main thread");
 	
 	try {//确保mutex销毁之前,f1,f2 线程完成
 		f1.wait();
 		f2.wait();
 	}
 	catch (...)
 	{
 	}

	//递归的 Lock 造成死锁,在第二次lock抛出异常system_error,错误码resource_deadlock_would_occur
	//lock_guard<mutex> l(printMutex);
	//print("Hello from the main thread");

	recursive_mutex dbMutex;
	lock_guard<recursive_mutex> lg(dbMutex);
	//recursive_mutex 允许同一线程多次锁定,并在最近一次(last)相应的unlock时释放lock


	mutex m;
	//试图获得一个lock,成功返回true,为了仍能够使用lock_guard,要额外传入实参 adopt_lock
	//有可能假性失败,lock为被他人拿走也可能失败返回false
	while (m.try_lock() == false)
	{
		//doSomeOtherStuff();
	}

	lock_guard<mutex> lg1(m, adopt_lock);


	timed_mutex mm;	//recursive_timed_mutex
	//if (m1.try_lock_until(system_clock::now() + chrono::seconds(1)))
	if (mm.try_lock_for(chrono::seconds(1))){
		lock_guard<timed_mutex> lg2(mm, adopt_lock);
	}
	else
	{
		//couldNotGetTheLock();
	}


	mutex m1;
	mutex m2;
	{
		//lock会阻塞,直到所有mutex被锁定或出现异常
		lock(m1, m2);
		//成功锁定后使用lock_guard,以adopt_lock作为第二实参,确保这些mutex在离开作用域时解锁
		lock_guard<mutex> lockM2(m1, adopt_lock);
		lock_guard<mutex> lockM3(m2, adopt_lock);
		//...
	}//自动unlock

	//或者使用try_lock,取得所有lock时返回-1,否则返回第一失败的lock的索引且其它成功的会unlock
	int idx = try_lock(m1, m2);
	if (idx < 0)
	{
		lock_guard<mutex> lockM2(m1, adopt_lock);
		lock_guard<mutex> lockM3(m2, adopt_lock);
		//...
	}//自动unlock
	else
	{
		cerr << "could not lock mutex m" << idx + 1 << endl;
	}

	//使用lock、try_lock后使用adopt_lock过继给lock_guard才能自动解锁

	//只调用一次
	once_flag oc;
	call_once(oc, initialize);//保证initialize函数只调用一次

	once_flag oc1;
	call_once(oc1, []{staticData = initializeStaticData(); });


}

class X
{
private:
	mutable once_flag initDataFlag;
	void initData()const;
public:
	int GetData()const{
		call_once(initDataFlag, &X::initData, this);
		//...
	}
};
#endif // _DEBUG

#if 0
//条件变量
#include <condition_variable>
//mutex readyMutex;
//condition_variable readyCondVar;
////激发的条件终于满足的线程(或多线程之一)必须调用
//readyCondVar.notify_one();	//一个
////或
//readyCondVar.notify_all();	//所有
////等待条件满足的线程必须调用
//unique_lock<mutex> l(readyMutex);
//readyCondVar.wait(l);

bool readyFlag; //表示条件真的满足了
mutex readyMutex;
condition_variable readyCondVar;

void thread1()
{
	cout << "<return>" << endl;
	cin.get();
	{
		lock_guard<mutex> lg(readyMutex);
		readyFlag = true;
	}
	readyCondVar.notify_one();
}

void thread2()
{
	{//这里必须使用unque_lock,不可使用lock_guard,因为wait的内部会明确地对mutex进行解锁和锁定
		unique_lock<mutex> ul(readyMutex);
		//lambda当做第二实参,用来检查条件是否真的满足,直到返回true
		readyCondVar.wait(ul, []{return readyFlag; });
		//相当于
		//while (!readyFlag){
		//	readyCondVar.wait(ul);
		//}
	}
	cout << "done" << endl;
}

int main()
{
	auto f1 = async(launch::async, thread1);
	auto f2 = async(launch::async, thread2);

	f1.wait();
	f2.wait();
}
#endif // 0



#include <queue>


#if 0
std::queue<int> queue1;//并发使用,被一个mutex和一个condition variable保护着
mutex queueMutex;
condition_variable queueCondVar;

void provider(int val)
{
	for (int i = 0; i < 6; ++i)
	{
		{
			lock_guard<mutex> ul(queueMutex);
			queue1.push(val + i);
		}
		queueCondVar.notify_one();
		this_thread::sleep_for(chrono::milliseconds(val));
	}
}

void consumer(int num)
{
	while (true)
	{
		int val;
		{
			unique_lock<mutex> ul(queueMutex);
			queueCondVar.wait(ul, []{return !queue1.empty(); });
			val = queue1.front();
			queue1.pop();
			cout << "consumer" << num << ": " << val << endl;

			//使用wait_for wait_until则要判断返回值
			//if (queueCondVar.wait_for(ul, chrono::seconds(1), []{return !queue1.empty(); }))
			//if (queueCondVar.wait_for(ul, chrono::seconds(1)) == cv_status::no_timeout)//这个没有判断readyFlag
			//{
			//	val = queue1.front();
			//	queue1.pop();
			//	cout << "consumer" << num << ": " << val << endl;
			//}
		}
		
	}
}


int main()
{
	auto p1 = async(launch::async, provider, 100);
	auto p2 = async(launch::async, provider, 300);
	auto p3 = async(launch::async, provider, 500);

	auto c1 = async(launch::async, consumer, 1);
	auto c2 = async(launch::async, consumer, 2);

	//c1.wait();
	getchar();
	exit(0);
}
#endif // 0


#include <atomic>

void foo(){
	atomic<int> ai(0);
	int x = ai;
	ai = 10;
	ai++;
	ai -= 17;

	atomic<int> a;
	atomic_init(&a, 0);//没有初始化则使用这个进行初始化
}



long data;
atomic<bool> readyFlag(false);

//void thread1()
//{
//	//...
//	readyFlag.store(true);//赋予一个新值
//}
//
//void thread2()
//{
//	while (!readyFlag.load())//取当前值
//	{
//		this_thread::sleep_for(chrono::milliseconds(100));
//	}
//	//...
//}

void provider()
{
	while (true)
	{
		cout << "<return>" << endl;
		char arr[100];
		cin.getline(arr, 100);

		data = 42;
		readyFlag.store(true);
	}
}

void consumer()
{
	while (true)
	{
		while (!readyFlag.load()){
			cout.put(‘.‘).flush();
			this_thread::sleep_for(chrono::milliseconds(50));
		}
		cout << "\nvalue : " << data << endl;
		readyFlag = false;
	}
	
}

int main()
{
	auto p = async(launch::async, provider);
	auto c = async(launch::async, consumer);
	
	c.wait();
}

//与条件变量一起使用
//unique_lock<mutex> ul(readyMutex);
//readyCondVar.wait(ul, []{return !readyFlag.load(); });

  

C++11 线程并发

原文:https://www.cnblogs.com/xslwm/p/9393671.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!