分别把前四个函数存成m文件,再运行最后一个。
swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : number newpath( i , : ) = oldpath ; % 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end pathfare.m function [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval % path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。 [ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : m for j = 2 : n objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end distance.m function [ fare ] = distance( coord ) % 根 据 各 城 市 的 距 离 坐 标 求 相 互 之 间 的 距 离 % fare 为 各 城 市 的 距 离 , coord 为 各 城 市 的 坐 标 [ v , m ] = size( coord ) ; % m 为 城 市 的 个 数 fare = zeros( m ) ; for i = 1 : m % 外 层 为 行 for j = i : m % 内 层 为 列 fare( i , j ) = ( sum( ( coord( : , i ) - coord( : , j ) ) .^ 2 ) ) ^ 0.5 ; fare( j , i ) = fare( i , j ) ; % 距 离 矩 阵 对 称 end end myplot.m function [ ] = myplot( path , coord , pathfar ) % 做 出 路 径 的 图 形 % path 为 要 做 图 的 路 径 ,coord 为 各 个 城 市 的 坐 标 % pathfar 为 路 径 path 对 应 的 费 用 len = length( path ) ; clf ; hold on ; title( [ ‘近似最短路径如下,路程为‘ , num2str( pathfar ) ] ) ; plot( coord( 1 , : ) , coord( 2 , : ) , ‘ok‘); pause( 0.4 ) ; for ii = 2 : len plot( coord( 1 , path( [ ii - 1 , ii ] ) ) , coord( 2 , path( [ ii - 1 , ii ] ) ) , ‘-b‘); x = sum( coord( 1 , path( [ ii - 1 , ii ] ) ) ) / 2 ; y = sum( coord( 2 , path( [ ii - 1 , ii ] ) ) ) / 2 ; text( x , y , [ ‘(‘ , num2str( ii - 1 ) , ‘)‘ ] ) ; pause( 0.4 ) ; end plot( coord( 1 , path( [ 1 , len ] ) ) , coord( 2 , path( [ 1 , len ] ) ) , ‘-b‘ ) ; x = sum( coord( 1 , path( [ 1 , len ] ) ) ) / 2 ; y = sum( coord( 2 , path( [ 1 , len ] ) ) ) / 2 ; text( x , y , [ ‘(‘ , num2str( len ) , ‘)‘ ] ) ; pause( 0.4 ) ; hold off ; clear; % 程 序 参 数 设 定 Coord = ... % 城 市 的 坐 标 Coordinates [ 0.6683 0.6195 0.4 0.2439 0.1707 0.2293 0.5171 0.8732 0.6878 0.8488 ; ... 0.2536 0.2634 0.4439 0.1463 0.2293 0.761 0.9414 0.6536 0.5219 0.3609 ] ; t0 = 1 ; % 初 温 t0 iLk = 20 ; % 内 循 环 最 大 迭 代 次 数 iLk oLk = 50 ; % 外 循 环 最 大 迭 代 次 数 oLk lam = 0.95 ; % λ lambda istd = 0.001 ; % 若 内 循 环 函 数 值 方 差 小 于 istd 则 停 止 ostd = 0.001 ; % 若 外 循 环 函 数 值 方 差 小 于 ostd 则 停 止 ilen = 5 ; % 内 循 环 保 存 的 目 标 函 数 值 个 数 olen = 5 ; % 外 循 环 保 存 的 目 标 函 数 值 个 数 % 程 序 主 体 m = length( Coord ) ; % 城 市 的 个 数 m fare = distance( Coord ) ; % 路 径 费 用 fare path = 1 : m ; % 初 始 路 径 path pathfar = pathfare( fare , path ) ; % 路 径 费 用 path fare ores = zeros( 1 , olen ) ; % 外 循 环 保 存 的 目 标 函 数 值 e0 = pathfar ; % 能 量 初 值 e0 t = t0 ; % 温 度 t for out = 1 : oLk % 外 循 环 模 拟 退 火 过 程 ires = zeros( 1 , ilen ) ; % 内 循 环 保 存 的 目 标 函 数 值 for in = 1 : iLk % 内 循 环 模 拟 热 平 衡 过 程 [ newpath , v ] = swap( path , 1 ) ; % 产 生 新 状 态 e1 = pathfare( fare , newpath ) ; % 新 状 态 能 量 % Metropolis 抽 样 稳 定 准 则 r = min( 1 , exp( - ( e1 - e0 ) / t ) ) ; if rand < r path = newpath ; % 更 新 最 佳 状 态 e0 = e1 ; end ires = [ ires( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量 % 内 循 环 终 止 准 则 :连 续 ilen 个 状 态 能 量 波 动 小 于 istd if std( ires , 1 ) < istd break ; end end ores = [ ores( 2 : end ) e0 ] ; % 保 存 新 状 态 能 量 % 外 循 环 终 止 准 则 :连 续 olen 个 状 态 能 量 波 动 小 于 ostd if std( ores , 1 ) < ostd break ; end t = lam * t ; end pathfar = e0 ; % 输 入 结 果 fprintf( ‘近似最优路径为:\n ‘ ) %disp( char( [ path , path(1) ] + 64 ) ) ; disp(path) fprintf( ‘近似最优路径路程\tpathfare=‘ ) ; disp( pathfar ) ; myplot( path , Coord , pathfar ) ;
原文:https://www.cnblogs.com/zxhyxiao/p/9409498.html