首页 > 其他 > 详细

POJ2505 A multiplication game(博弈)

时间:2018-08-03 18:40:41      阅读:152      评论:0      收藏:0      [点我收藏+]

题意

开始时$p = 1$,每次可以乘$2 - 9$,第一个使得$p \geqslant n$的人赢

问先手是否必胜

$1 <n <4294967295$

Sol

认真的推理一波。

若当前的数为$\frac{n}{9} \leqslant x \leqslant n$,则先手必胜

若当前的数为$\frac{n}{18} \leqslant x \leqslant \frac{n}{9}$,则先手必败

若当前的数为$\frac{n}{18 * 9} \leqslant x \leqslant \frac{n}{18}$,则先手必胜

$\dots \dots \dots \dots \dots \dots \dots \dots \dots\dots\dots \dots $

然后就显然了,每次除$18$,最后判一下就行了。

然而不知道为啥用double才能过qwq。。。

#include<cstdio>
#define LL long long 
using namespace std;
int main() {
    double n;
    while(scanf("%lf", &n) != EOF) {
        while(n > 18) n = n / 18;
        if(n <= 9) puts("Stan wins.");
        else puts("Ollie wins.");        
    }
    return 0;
}

 

POJ2505 A multiplication game(博弈)

原文:https://www.cnblogs.com/zwfymqz/p/9415666.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!