首页 > 移动平台 > 详细

论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention

时间:2018-08-05 21:08:38      阅读:253      评论:0      收藏:0      [点我收藏+]

Learning Visual Question Answering by Bootstrapping Hard Attention

Google DeepMind  ECCV-2018

  2018-08-05 19:24:44

 

Paperhttps://arxiv.org/abs/1808.00300 

 

技术分享图片

 

Introduction

本文尝试仅仅用 hard attention 的方法来抠出最有用的 feature,进行 VQA 任务的学习。

Soft Attention:   

  Existing attention models [7,8,9,10] are predominantly based on soft attention, in which all information is adaptively re-weighted before being aggregated. This can improve accuracy by isolating important information and avoiding interference from unimportant information. 

Hard Attention

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

--

论文阅读:Learning Visual Question Answering by Bootstrapping Hard Attention

原文:https://www.cnblogs.com/wangxiaocvpr/p/9427034.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!