这节我们实现nand的ecc,保存环境变量到nand flash 中。然后把我们之前的led灯烧写到nand flash 中,开机启动,在 tiny210.h 中定义宏 CONFIG_S5PV210_NAND_HWECC、CONFIG_SYS_NAND_ECCSIZE、CONFIG_SYS_NAND_ECCBYTES
CONFIG_SYS_NAND_ECCSIZE 定义了消息长度,即每多少字节进行 1 次 ECC 校验
CONFIG_SYS_NAND_ECCBYTES 定义为 13Byte,将 drivers/mtd/nand/s5pv210_nand.c 中的 CONFIG_S3C2410_NAND_HWECC 替换为CONFIG_S5PV210_NAND_HWECC,我们只进行 ECC 校验写,ECC 校验读使用三星提供的函数,我们必须按照三星手册规定的 ECC 校验码在
Spare Field 中的存储格式进行存储。
因此我们需要自定义 nand_ecclayout 结构体,这个结构体描述了如何存储 ECC 数据,同时将这个结构体赋值给 nand->ecc.layout
其他的代码请看源码:
/* * (C) Copyright 2006 OpenMoko, Inc. * Author: Harald Welte <laforge@openmoko.org> * * SPDX-License-Identifier: GPL-2.0+ */ #include <common.h> #include <nand.h> #include <asm/arch/nand_reg.h> #include <asm/io.h> #define MP0_1CON (*(volatile u32 *)0xE02002E0) #define MP0_3CON (*(volatile u32 *)0xE0200320) #define MP0_6CON (*(volatile u32 *)0xE0200380) /* modied by shl */ static void s5pv210_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *chip = mtd->priv; struct s5pv210_nand *nand = (struct s5pv210_nand *)samsung_get_base_nand(); debug("hwcontrol(): 0x%02x 0x%02x\n", cmd, ctrl); ulong IO_ADDR_W = (ulong)nand; if (ctrl & NAND_CTRL_CHANGE) { if (ctrl & NAND_CLE) IO_ADDR_W = IO_ADDR_W | 0x8; /* Command Register */ else if (ctrl & NAND_ALE) IO_ADDR_W = IO_ADDR_W | 0xC; /* Address Register */ chip->IO_ADDR_W = (void *)IO_ADDR_W; if (ctrl & NAND_NCE) /* select */ writel(readl(&nand->nfcont) & ~(1 << 1), &nand->nfcont); else /* deselect */ writel(readl(&nand->nfcont) | (1 << 1), &nand->nfcont); } if (cmd != NAND_CMD_NONE) writeb(cmd, chip->IO_ADDR_W); else chip->IO_ADDR_W = &nand->nfdata; } static int s5pv210_dev_ready(struct mtd_info *mtd) { struct s5pv210_nand *nand = (struct s5pv210_nand *)samsung_get_base_nand(); debug("dev_ready\n"); return readl(&nand->nfstat) & 0x01; } #ifdef CONFIG_S5PV210_NAND_HWECC void s5pv210_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct s5pv210_nand *nand = (struct s5pv210_nand *)samsung_get_base_nand(); debug("s5pv210_nand_enable_hwecc(%p, %d)\n", mtd, mode); writel(readl(&nand->nfconf) | (0x3 << 23), &nand->nfconf); if (mode == NAND_ECC_READ) { } else if (mode == NAND_ECC_WRITE) { /* set 8/12/16bit Ecc direction to Encoding */ writel(readl(&nand->nfecccont) | (0x1 << 16), &nand->nfecccont); /* clear 8/12/16bit ecc encode done */ writel(readl(&nand->nfeccstat) | (0x1 << 25), &nand->nfeccstat); } /* Initialize main area ECC decoder/encoder */ writel(readl(&nand->nfcont) | (0x1 << 5), &nand->nfcont); /* The ECC message size(For 512-byte message, you should set 511) * 8-bit ECC/512B */ writel((511 << 16) | 0x3, &nand->nfeccconf); writel(readl(&nand->nfstat) | (0x1 << 4) | (0x1 << 5), &nand->nfstat); /* Initialize main area ECC decoder/ encoder */ writel(readl(&nand->nfecccont) | (0x1 << 2), &nand->nfecccont); /* Unlock Main area ECC */ writel(readl(&nand->nfcont) & ~(0x1 << 7), &nand->nfcont); } /* modied by shl */ static int s5pv210_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { struct s5pv210_nand *nand = (struct s5pv210_nand *)samsung_get_base_nand(); u32 nfeccprgecc0 = 0, nfeccprgecc1 = 0, nfeccprgecc2 = 0, nfeccprgecc3 = 0; /* Lock Main area ECC */ writel(readl(&nand->nfcont) | (1 << 7), &nand->nfcont); /* 读取13 Byte的Ecc Code */ nfeccprgecc0 = readl(&nand->nfeccprgecc0); nfeccprgecc1 = readl(&nand->nfeccprgecc1); nfeccprgecc2 = readl(&nand->nfeccprgecc2); nfeccprgecc3 = readl(&nand->nfeccprgecc3); ecc_code[0] = nfeccprgecc0 & 0xff; ecc_code[1] = (nfeccprgecc0 >> 8) & 0xff; ecc_code[2] = (nfeccprgecc0 >> 16) & 0xff; ecc_code[3] = (nfeccprgecc0 >> 24) & 0xff; ecc_code[4] = nfeccprgecc1 & 0xff; ecc_code[5] = (nfeccprgecc1 >> 8) & 0xff; ecc_code[6] = (nfeccprgecc1 >> 16) & 0xff; ecc_code[7] = (nfeccprgecc1 >> 24) & 0xff; ecc_code[8] = nfeccprgecc2 & 0xff; ecc_code[9] = (nfeccprgecc2 >> 8) & 0xff; ecc_code[10] = (nfeccprgecc2 >> 16) & 0xff; ecc_code[11] = (nfeccprgecc2 >> 24) & 0xff; ecc_code[12] = nfeccprgecc3 & 0xff; debug("s5pv210_nand_calculate_hwecc(%p,):\n" "0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" "0x%02x 0x%02x 0x%02x\n", mtd , ecc_code[0], ecc_code[1], ecc_code[2], ecc_code[3], ecc_code[4], ecc_code[5], ecc_code[6], ecc_code[7], ecc_code[8], ecc_code[9], ecc_code[10], ecc_code[11], ecc_code[12]); return 0; } /* add by shl */ #define NF8_ReadPage_Adv(a,b,c) (((int(*)(u32, u32, u8*))(*((u32 *)0xD0037F90)))(a,b,c)) static int s5pv210_nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { /* tiny210使用的NAND FLASH一个块64页 */ return NF8_ReadPage_Adv(page / 64, page % 64, buf); } static int s5pv210_nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { if (read_ecc[0] == calc_ecc[0] && read_ecc[1] == calc_ecc[1] && read_ecc[2] == calc_ecc[2]) return 0; printf("s5pv210_nand_correct_data: not implemented\n"); return -1; } #endif /* * add by shl * nand_select_chip * @mtd: MTD device structure * @ctl: 0 to select, -1 for deselect * * Default select function for 1 chip devices. */ static void s5pv210_nand_select_chip(struct mtd_info *mtd, int ctl) { struct nand_chip *chip = mtd->priv; switch (ctl) { case -1: /* deselect the chip */ chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); break; case 0: /* Select the chip */ chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); break; default: BUG(); } } /* add by shl */ static struct nand_ecclayout nand_oob_64 = { .eccbytes = 52, /* 2048 / 512 * 13 */ .eccpos = { 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, /* 0和1用于保存坏块标记,12~63保存ecc,剩余2~11为free */ .oobfree = { {.offset = 2, .length = 10} } }; /* modied by shl */ int board_nand_init(struct nand_chip *nand) { u32 cfg = 0; struct s5pv210_nand *nand_reg = (struct s5pv210_nand *)(struct s5pv210_nand *)samsung_get_base_nand(); debug("board_nand_init()\n"); /* initialize hardware */ /* HCLK_PSYS=133MHz(7.5ns) */ cfg = (0x1 << 23) | /* Disable 1-bit and 4-bit ECC */ /* 下面3个时间参数稍微比计算出的值大些(我这里依次加1),否则读写不稳定 */ (0x3 << 12) | /* 7.5ns * 2 > 12ns tALS tCLS */ (0x2 << 8) | /* (1+1) * 7.5ns > 12ns (tWP) */ (0x1 << 4) | /* (0+1) * 7.5 > 5ns (tCLH/tALH) */ (0x0 << 3) | /* SLC NAND Flash */ (0x0 << 2) | /* 2KBytes/Page */ (0x1 << 1); /* 5 address cycle */ writel(cfg, &nand_reg->nfconf); writel((0x1 << 1) | (0x1 << 0), &nand_reg->nfcont); /* Disable chip select and Enable NAND Flash Controller */ /* Config GPIO */ MP0_1CON &= ~(0xFFFF << 8); MP0_1CON |= (0x3333 << 8); MP0_3CON = 0x22222222; MP0_6CON = 0x22222222; /* initialize nand_chip data structure */ nand->IO_ADDR_R = (void *)&nand_reg->nfdata; nand->IO_ADDR_W = (void *)&nand_reg->nfdata; nand->select_chip = s5pv210_nand_select_chip; /* read_buf and write_buf are default */ /* read_byte and write_byte are default */ /* hwcontrol always must be implemented */ nand->cmd_ctrl = s5pv210_hwcontrol; nand->dev_ready = s5pv210_dev_ready; #ifdef CONFIG_S5PV210_NAND_HWECC nand->ecc.hwctl = s5pv210_nand_enable_hwecc; nand->ecc.calculate = s5pv210_nand_calculate_ecc; nand->ecc.correct = s5pv210_nand_correct_data; nand->ecc.mode = NAND_ECC_HW; nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; nand->ecc.strength = 1; /* add by shl */ nand->ecc.layout = &nand_oob_64; nand->ecc.read_page = s5pv210_nand_read_page_hwecc; #else nand->ecc.mode = NAND_ECC_SOFT; #endif #ifdef CONFIG_S3C2410_NAND_BBT nand->bbt_options |= NAND_BBT_USE_FLASH; #endif debug("end of nand_init\n"); return 0; }
重新编译,成功生成 u-boot.bin,将它烧写到 SD 卡的扇区 32,从 SD 卡启动开发板:
下面进行 NAND 启动试验,将之前的led程序烧写到 NAND,然后从 NAND 启动,可以看到 LED 全亮的效果。首先我们先编译 led.c,生成 led.bin,然后 添加 16B 的头信息生成 210.bin,然后将 210.bin 拷贝到 tftp 服务器目录。
然后使用最新的 u-boot 将 210.bin 烧写到 NAND 的第 0 页,然后从 NAND 启动
从 NAND 启动可以看到 4 个 LED 全亮。
tiny210(s5pv210)移植u-boot(基于 2014.4 版本)——NAND 8位硬件ECC
原文:http://blog.csdn.net/sihailin1991/article/details/38063673