小A的楼房外有一大片施工工地,工地上有N栋待建的楼房。每天,这片工地上的房子拆了又建、建了又拆。他经常无聊地看着窗外发呆,数自己能够看到多少栋房子。
为了简化问题,我们考虑这些事件发生在一个二维平面上。小A在平面上(0,0)点的位置,第i栋楼房可以用一条连接(i,0)和(i,Hi)的线段表示,其中Hi为第i栋楼房的高度。如果这栋楼房上任何一个高度大于0的点与(0,0)的连线没有与之前的线段相交,那么这栋楼房就被认为是可见的。
施工队的建造总共进行了M天。初始时,所有楼房都还没有开始建造,它们的高度均为0。在第i天,建筑队将会将横坐标为Xi的房屋的高度变为Yi(高度可以比原来大---修建,也可以比原来小---拆除,甚至可以保持不变---建筑队这天什么事也没做)。请你帮小A数数每天在建筑队完工之后,他能看到多少栋楼房?
第一行两个正整数N,M
接下来M行,每行两个正整数Xi,Yi
M行,第i行一个整数表示第i天过后小A能看到的楼房有多少栋
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 100050
#define ls p<<1
#define rs p<<1|1
typedef double f2;
int t[N<<2],n,m;
f2 mx[N<<2];
int calc(int l,int r,f2 v,int p) {
if(l==r) return mx[p]>v;
int mid=(l+r)>>1;
if(mx[ls]<=v) return calc(mid+1,r,v,rs);
else return calc(l,mid,v,ls)+t[p]-t[ls];
}
void update(int l,int r,int x,f2 v,int p) {
if(l==r) {
t[p]=1; mx[p]=v; return ;
}
int mid=(l+r)>>1;
if(x<=mid) update(l,mid,x,v,ls);
else update(mid+1,r,x,v,rs);
mx[p]=max(mx[ls],mx[rs]);
t[p]=t[ls]+calc(mid+1,r,mx[ls],rs);
}
int main() {
scanf("%d%d",&n,&m);
int i; int x,y;
for(i=1;i<=m;i++) {
scanf("%d%d",&x,&y); update(1,n,x,f2(y)/x,1);
printf("%d\n",t[1]);
}
}