首页 > 其他 > 详细

图论trainning-part-2 C. The Largest Clique

时间:2014-07-23 22:17:17      阅读:624      评论:0      收藏:0      [点我收藏+]

C. The Largest Clique

Time Limit: 3000ms
Memory Limit: 131072KB
64-bit integer IO format: %lld      Java class name: Main
 

 

bubuko.com,布布扣

Given a directed graph G, consider the following transformation. First, create a new graph T(G) to have the same vertex set as G. Create a directed edge between two vertices u and v in T(G) if and only if there is a path between u and v in G that follows the directed edges only in the forward direction. This graph T(G) is often called the transitive closure of G.

We define a clique in a directed graph as a set of vertices U such that for any two vertices u and v in U, there is a directed edge either from u to v or from v to u (or both). The size of a clique is the number of vertices in the clique.

The number of cases is given on the first line of input. Each test case describes a graph G. It begins with a line of two integers nand m, where 0 ≤ n ≤ 1000 is the number of vertices of G and 0 ≤ m ≤ 50,000 is the number of directed edges of G. The vertices ofG are numbered from 1 to n. The following m lines contain two distinct integers u and v between 1 and n which define a directed edge from u to v in G.

For each test case, output a single integer that is the size of the largest clique in T(G).

Sample input

1
5 5
1 2
2 3
3 1
4 1
5 2

Output for sample input

4

解题:强连通子图的求解,缩点,DAG上的动态规划。先求出所有的强连通子图后,再对各个强连通子图进行缩点,所谓缩点,即为把这个强连通块作为一个点,进行新图的建立。原来图上的任意一点必然属于某个强连通块。所以根据各点所在的连通块,进行新图的建立,注意方向性,DAG上的动态规划是对于有向图而言的,所以必须保证方向的正确性。建立新图后,求DAG上的最长路径即可。

bubuko.com,布布扣
 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define INF 0x3f3f3f3f
15 using namespace std;
16 const int maxn = 1010;
17 int low[maxn],dfn[maxn],iindex,sccBlocks;
18 bool instack[maxn],vis[maxn];
19 int belong[maxn],val[maxn],dp[maxn],n,m;
20 stack<int>s;
21 vector<int>g[maxn];
22 vector<int>mp[maxn];
23 void tarjan(int u){
24     dfn[u] = low[u] = ++iindex;
25     instack[u] = true;
26     s.push(u);
27     for(int i = 0; i < g[u].size(); i++){
28         int v = g[u][i];
29         if(!dfn[v]){
30             tarjan(v);
31             low[u] = min(low[u],low[v]);
32         }else if(instack[v] && low[u] > dfn[v]) low[u] = dfn[v];
33     }
34     if(dfn[u] == low[u]){
35         int v;
36         sccBlocks++;
37         do{
38             v = s.top();
39             s.pop();
40             instack[v] = false;
41             belong[v] = sccBlocks;
42         }while(u != v);
43     }
44 }
45 int dag(int u){
46     if(dp[u]) return dp[u];
47     else if(mp[u].size() == 0) return dp[u] = val[u];
48     int ans = 0;
49     for(int v = 0; v < mp[u].size(); v++){
50         ans = max(ans,dag(mp[u][v]));
51     }
52     return dp[u] = ans+val[u];
53 }
54 int main(){
55     int t,u,v,i,j;
56     scanf("%d",&t);
57     while(t--){
58         scanf("%d%d",&n,&m);
59         for(i = 0; i <= n; i++){
60             g[i].clear();
61             dfn[i] = low[i] = 0;
62             instack[i] = false;
63             val[i] = belong[i] = 0;
64             dp[i] = 0;
65             mp[i].clear();
66         }
67         for(i = 0; i < m; i++){
68             scanf("%d%d",&u,&v);
69             g[u].push_back(v);
70         }
71         iindex = sccBlocks = 0;
72         for(i = 1; i <= n; i++)
73             if(!dfn[i]) tarjan(i);
74         for(u = 1; u <= n; u++){
75             val[belong[u]]++;
76             memset(vis,false,sizeof(vis));
77             for(j = 0; j < g[u].size(); j++){
78                 v = g[u][j];
79                 if(!vis[belong[v]] && belong[v] != belong[u]){
80                     vis[belong[v]] = true;
81                     mp[belong[u]].push_back(belong[v]);
82                 }
83             }
84         }
85         int ans = 0;
86         for(i = 1; i <= sccBlocks; i++)
87             ans = max(ans,dag(i));
88         printf("%d\n",ans);
89     }
90     return 0;
91 }
View Code

 

图论trainning-part-2 C. The Largest Clique,布布扣,bubuko.com

图论trainning-part-2 C. The Largest Clique

原文:http://www.cnblogs.com/crackpotisback/p/3864070.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!