MLE了23333
~~为什么空间不给256MB,这样我就能开几个5000*5000的数组了~~
考虑一种树形dp的方法吧
\(f_{i,j}\)表示从点\(i\)向下走\(j\)步并选出两个不在\(i\)同一个子树的方案数,\(g_{i,j}\)表示从\(i\)出发在\(i\)子树外走\(j\)步的方案数
那么答案即为\(\sum f_{i,j}×g_{i,j}\)
注意统计时可能会出现重复的情况
时间复杂度:\(O(n^2)\)
当然,还有一种复杂度为\(O(n^2)\)的方法,直接枚举三个点的中心点,然后暴力dfs统计答案
感觉这个比较容易实现
#include <bits/stdc++.h>
#define N 5010
using namespace std;
template <typename node> void chkmax(node &x, node y) {x = max(x, y);}
template <typename node> void chkmin(node &x, node y) {x = min(x, y);}
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == ‘-‘) f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - ‘0‘, c = getchar(); x *= f;
}
struct Edge {
int next, num;
} e[N * 3];
int n, cnt, p[N], f[N][N], g[N][N], s[N][N];
long long ans = 0;
void add(int x, int y) {
e[++cnt] = (Edge) {e[x].next, y};
e[x].next = cnt;
}
void dpI(int x, int fa) {
s[x][0] = 1, p[x] = fa; int tot = 0;
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num;
if (k == fa) continue;
dpI(k, x); tot++;
for (int i = 1; i <= n; i++) {
if (tot >= 3) ans += 1ll * f[x][i] * s[k][i - 1];
f[x][i] += s[x][i] * s[k][i - 1];
s[x][i] += s[k][i - 1];
}
}
}
void dfs(int x, int fa, int y, int sum) {
g[y][sum]++;
for (int p = e[x].next; p; p = e[p].next)
if (e[p].num != fa) dfs(e[p].num, x, y, sum + 1);
}
int main() {
read(n); cnt = n;
for (int i = 1; i < n; i++) {
int x, y; read(x), read(y);
add(x, y), add(y, x);
}
dpI(1, 0);
for (int i = 1; i <= n; i++)
for (int q = e[i].next; q; q = e[q].next)
if (e[q].num == p[i]) dfs(p[i], i, i, 1);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
ans += 1ll * f[i][j] * g[i][j];
cout << ans << "\n";
return 0;
}
原文:https://www.cnblogs.com/copperoxide/p/9476772.html