pcl中计算程序运行时间有很多函数,其中利用控制台的时间计算
首先必须包含头文件 #include <pcl/console/time.h>
#include <pcl/console/time.h> pcl::console::TicToc time; time.tic(); //程序段 cout<<time.toc()/1000<<"s"<<endl;
#include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointer(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ> cloud; cloud = *cloudPointer; cloudPointer = cloud.makeShared();
#include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/common.h>
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ> ("your_pcd_file.pcd", *cloud); pcl::PointXYZ minPt, maxPt; pcl::getMinMax3D (*cloud, minPt, maxPt);
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud); pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>); std::vector<int > indexs = { 1, 2, 5 }; pcl::copyPointCloud(*cloud, indexs, *cloudOut);
pcl::PointIndices::Ptr inliers(new pcl::PointIndices); inliers->indices = pointIdxRadiusSearchMap; //已知索引的index std::vector<int> pointIdxRadiusSearchMap; pcl::ExtractIndices<pcl::PointXYZ> extract; extract.setInputCloud(_laser3d_map); extract.setIndices(inliers); extract.setNegative(true); //false: 筛选Index对应的点,true:过滤获取Index之外的点 extract.filter(*map_3d_2);
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud); pcl::PointCloud<pcl::PointXYZ>::iterator index = cloud->begin(); cloud->erase(index);//删除第一个 index = cloud->begin() + 5; cloud->erase(cloud->begin());//删除第5个 pcl::PointXYZ point = { 1, 1, 1 }; //在索引号为5的位置1上插入一点,原来的点后移一位 cloud->insert(cloud->begin() + 5, point); cloud->push_back(point);//从点云最后面插入一点 std::cout << cloud->points[5].x;//输出1
如果删除的点太多建议用上面的方法拷贝到新点云,再赋值给原点云,如果要添加很多点,建议先resize,然后用循环向点云里的添加。
#include <pcl/io/pcd_io.h> #include <pcl/common/impl/io.hpp> #include <pcl/point_types.h> #include <pcl/point_cloud.h> #include <pcl/common/transforms.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("path/.pcd",*cloud); //全局变化 //构造变化矩阵 Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity(); float theta = M_PI/4; //旋转的度数,这里是45度 transform_1 (0,0) = cos (theta); //这里是绕的Z轴旋转 transform_1 (0,1) = -sin(theta); transform_1 (1,0) = sin (theta); transform_1 (1,1) = cos (theta); //transform_1 (0,2) = 0.3; //这样会产生缩放效果 //transform_1 (1,2) = 0.6; // transform_1 (2,2) = 1; transform_1 (0,3) = 25; //这里沿X轴平移 transform_1 (1,3) = 30; transform_1 (2,3) = 380; pcl::PointCloud<pcl::PointXYZ>::Ptr transform_cloud1 (new pcl::PointCloud<pcl::PointXYZ>); pcl::transformPointCloud(*cloud,*transform_cloud1,transform_1); //不言而喻
//第一个参数为输入,第二个参数为输入点云中部分点集索引,第三个为存储对象,第四个是变换矩阵。
pcl::transformPointCloud(*cloud,pcl::PointIndices indices,*transform_cloud1,matrix);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>); pcl::io::loadPCDFile("/home/yxg/pcl/pcd/mid.pcd",*cloud); pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne; ne.setInputCloud(cloud); pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>()); ne.setSearchMethod(tree); pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>()); ne.setKSearch(8); //ne.setRadisuSearch(0.3); ne.compute(*cloud_normals); pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_nomal (new pcl::PointCloud<pcl::PointNormal>); pcl::concatenateFields(*cloud,*cloud_normals,*cloud_with_nomal);
#include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <pcl/filters/filter.h> #include <pcl/io/pcd_io.h> using namespace std; typedef pcl::PointXYZRGBA point; typedef pcl::PointCloud<point> CloudType; int main (int argc,char **argv) { CloudType::Ptr cloud (new CloudType); CloudType::Ptr output (new CloudType); pcl::io::loadPCDFile(argv[1],*cloud); cout<<"size is:"<<cloud->size()<<endl; vector<int> indices; pcl::removeNaNFromPointCloud(*cloud,*output,indices); cout<<"output size:"<<output->size()<<endl; pcl::io::savePCDFile("out.pcd",*output); return 0; }
#include <pcl/io/pcd_io.h> #include <ctime> #include <Eigen/Core> #include <pcl/point_types.h> #include <pcl/point_cloud.h> using namespace std; typedef pcl::PointXYZ point; typedef pcl::PointXYZRGBA pointcolor; int main(int argc,char **argv) { pcl::PointCloud<pointcolor>::Ptr input (new pcl::PointCloud<pointcolor>); pcl::io::loadPCDFile(argv[1],*input); pcl::PointCloud<point>::Ptr output (new pcl::PointCloud<point>); int M = input->points.size(); cout<<"input size is:"<<M<<endl; for (int i = 0;i <M;i++) { point p; p.x = input->points[i].x; p.y = input->points[i].y; p.z = input->points[i].z; output->points.push_back(p); } output->width = 1; output->height = M; cout<< "size is"<<output->size()<<endl; pcl::io::savePCDFile("output.pcd",*output); }
//平均密度计算 pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身 kdtree.setInputCloud(cloud); int k =2; float everagedistance =0; for (int i =0; i < cloud->size()/2;i++) { vector<int> nnh ; vector<float> squaredistance; //pcl::PointXYZ p; //p = cloud->points[i]; kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance); everagedistance += sqrt(squaredistance[1]); //cout<<everagedistance<<endl; } everagedistance = everagedistance/(cloud->size()/2); cout<<"everage distance is : "<<everagedistance<<endl;
#include <pcl/kdtree/kdtree_flann.h> pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建KDtree kdtree.setInputCloud (in_cloud); pcl::PointXYZ searchPoint; //创建目标点,(搜索该点的近邻) searchPoint.x = 1; searchPoint.y = 2; searchPoint.z = 3; //查询近邻点的个数 int k = 10; //近邻点的个数 std::vector<int> pointIdxNKNSearch(k); //存储近邻点集的索引 std::vector<float>pointNKNSquareDistance(k); //近邻点集的距离 if (kdtree.nearestKSearch(searchPoint,k,pointIdxNKNSearch,pointNKNSquareDistance)>0) { for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxNKNSearch[i] ].x << " " << in_cloud->points[ pointIdxNKNSearch[i] ].y << " " <<in_cloud->points[ pointIdxNKNSearch[i] ].z << " (squared distance: " <<pointNKNSquareDistance[i] << ")<<std::endl; } //半径为r的近邻点 float radius = 40.0f; //其实是求的40*40距离范围内的点 std::vector<int> pointIdxRadiusSearch; //存储的对应的平方距离 std::vector<float> a; if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, a) > 0 ) { for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i) std::cout << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].x << " " <<in_cloud->points[ pointIdxRadiusSearch[i] ].y << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].z << " (squared distance: " <<a[i] << ")" << std::endl; }
ply
文件后缀命名为.ply
格式文件,常用的点云数据文件。ply
文件不仅可以存储点
数据,而且可以存储网格
数据. 用emacs打开一个ply
文件,观察表头,如果表头element face
的值为0,则表示该文件为点云文件,如果element face
的值为某一正整数N,则表示该文件为网格文件,且包含N个网格.所以利用pcl读取 ply 文件,不能一味用pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PintT>)
来读取。在读取ply
文件时候,首先要分清该文件是点云还是网格类文件。如果是点云文件,则按照一般的点云类去读取即可,官网例子,就是这样。如果ply
文件是网格类,则需要
pcl::PolygonMesh mesh; pcl::io::loadPLYFile(argv[1],mesh); pcl::io::savePLYFile("result.ply", mesh);
读取。(官网例子之所以能成功,是因为它对模型进行了细分处理,使得网格变成了点)
例如sift算法中,pcl无法直接提供索引(主要原因是sift点是通过计算出来的,在某些不同参数下,sift点可能并非源数据中的点,而是某些点的近似),若要获取索引,则可利用以下函数:
void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices) { pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; kdtree.setInputCloud(cloudin); std::vector<float>pointNKNSquareDistance; //近邻点集的距离 std::vector<int> pointIdxNKNSearch; for (size_t i =0; i < keypoints.size();i++) { kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance); // cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl; // cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl; indices->indices.push_back(pointIdxNKNSearch[0]); } }
其思想就是:将原始数据插入到flann的kdtree中,寻找keypoints的最近邻,如果距离等于0,则说明是同一点,提取索引即可.
Eigen::Vector4f centroid; //质心 pcl::compute3DCentroid(*cloud_smoothed,centroid); //估计质心的坐标
#include <pcl/io/io.h> #include <pcl/io/pcd_io.h> #include <pcl/io/obj_io.h> #include <pcl/PolygonMesh.h> #include <pcl/point_cloud.h> #include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件; #include <pcl/io/vtk_io.h> #include <pcl/io/ply_io.h> #include <pcl/point_types.h> using namespace pcl;
int main(int argc,char **argv) { pcl::PolygonMesh mesh; //pcl::io::loadPolygonFileOBJ(argv[1], mesh); pcl::io::loadPLYFile(argv[1],mesh); pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::fromPCLPointCloud2(mesh.cloud, *cloud); pcl::io::savePCDFileASCII("result.pcd", *cloud); return 0; }
以上代码可以从.obj或.ply面片格式转化为点云类型。
原文:https://www.cnblogs.com/flyinggod/p/9478000.html