首页 > 其他 > 详细

P2158 [SDOI2008]仪仗队

时间:2018-08-15 14:35:31      阅读:154      评论:0      收藏:0      [点我收藏+]

终于学到了欧拉函数,咳出血。


有一个前置题目:P1170 兔八哥和猎人

上面这道题目问你平面上的两个点是否能够无阻碍地相互看见。

答案是横坐标差绝对值与纵坐标差绝对值,这两个数互质

所以这道题也差不多,能看见的也只有互质的。

但是\(N \leq 40000\),每个点算出gcd再判重好像有点慢。

其实有一种神奇的东西叫做欧拉函数\(\phi(n)\),意思为小于等于\(n\)的正数中与\(n\)互质的数有多少个。

可以把这个正方形从对角线切开,然后分左上角和右下角分别计算。

不过因为这两边轴对称,所以答案是一样的,最后乘以2即可。

题解中看到了一句很点破题目的话:

y=0 只有原点(跳过)

y=1 找(x, 1)满足x < 1 且x与1互质

y=2 找(x, 2)满足x < 2 且x与2互质

...

y=N 找(x, N)满足x < N 且x与N互质

所以我们可以对一个三角形区域算一遍,而上面的东西不就是欧拉函数了吗?

所以从1到\(n-1\)我们把所有的欧拉函数值加一遍,最后乘以2,记得再加1(对角线也有一个点能被看见)。

问题来了:如何算欧拉函数?

那么我们来引入欧拉筛法,其实素数的线性筛就是从这里来的。

具体可以看这个博客,我肯定没他讲得细:博客地址

然后注意特判\(n=1\)的情况,这个时候只有\(1 \times 1\),只有他自己,答案为0。

欧拉筛里面有需要注意的地方,注意一下。

代码:

#include<cstdio>
#include<cstring>


const int maxn = 40005;
int n;
bool isprime[maxn];
int prime[maxn], tot;
int phi[maxn];
int ans;

void get_phi()
{
    memset(isprime, true, sizeof isprime);
    isprime[1] = false;
    phi[1] = 1;
    
    for(int i = 2; i <= n; i++)
    {
        if(isprime[i])
        {
            phi[i] = i - 1;
            prime[++tot] = i;
        }
        for(int j = 1; j <= tot; j++)// no else
        {
            if(i * prime[j] > n) break;
            isprime[i * prime[j]] = false;
            if(i % prime[j] == 0)
            {
                phi[i * prime[j]] = phi[i] * prime[j];// attention
                break;
            }
            else phi[i * prime[j]] = phi[i] * (prime[j] - 1);// attention
        }
    }
}
int main()
{
    scanf("%d", &n);
    get_phi();
    
    for(int i = 1; i < n; i++) ans += phi[i];
    printf("%d\n", ans * 2 + 1);
    return 0;
}

P2158 [SDOI2008]仪仗队

原文:https://www.cnblogs.com/Garen-Wang/p/9481017.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!