首页 > 编程语言 > 详细

FocusBI: 使用Python爬虫为BI准备数据源(原创)

时间:2018-08-15 16:33:37      阅读:128      评论:0      收藏:0      [点我收藏+]

  在为企业实施商业智能时,大部分都是使用内部数据建模和可视化;以前极少企业有爬虫工程师来为企业准备外部数据,最近一年来Python爬虫异常火爆,企业也开始招爬虫工程师为企业丰富数据来源。

       我使用Python 抓取过一些网站数据,如:美团、点评、一亩田、租房等;这些数据并没有用作商业用途而是个人兴趣爬取下来做练习使用;这里我已  一亩田为例使用 scrapy框架去抓取它的数据。

一亩田

       它是一个农产品网站,汇集了中国大部分农产品产地和市场行情,发展初期由百度系的人员创建,最初是招了大量的业务员去农村收集和教育农民把产品信息发布到一亩田网上..。

一亩田一开始是网页版,由于爬虫太多和农户在外劳作使用不方便而改成APP版废弃网页版,一亩田App反爬能力非常强悍;另外一亩田有一亩田产地行情和市场行情网页版,它的信息量也非常多,所以我选择爬取一亩田产地行情数据。

 

       爬取一亩田使用的是Scrapy框架,这个框架的原理及dome我在这里不讲,直接给爬取一亩田的分析思路及源码;

一亩田爬虫分析思路

       首先登陆一亩田产地行情:http://hangqing.ymt.com/chandi,看到农产品分类

单击水果分类就能看到它下面有很多小分类,单击梨进入水果梨的行情页,能看到它下面有全部品种和指定地区选择一个省就能看到当天的行情和一个月的走势;

技术分享图片

技术分享图片

技术分享图片

技术分享图片

看到这一连串的网页我就根据这个思路去抓取数据。

 

一亩田爬虫源码

1.首先创建一个Spider

技术分享图片     

 

 

2.行情数据

       抓取大类、中类、小类、品种  hangqing.py

技术分享图片
 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 from mySpider.items import MyspiderItem
 4 from copy import deepcopy
 5 import time
 6 
 7 
 8 class HangqingSpider(scrapy.Spider):
 9     name = "hangqing"
10     allowed_domains = ["hangqing.ymt.com"]
11     start_urls = (
12         http://hangqing.ymt.com/,
13     )
14 
15     # 大分类数据
16     def parse(self, response):
17         a_list = response.xpath("//div[@id=‘purchase_wrapper‘]/div//a[@class=‘hide‘]")
18 
19         for a in a_list:
20             items = MyspiderItem()
21             items["ymt_bigsort_href"] = a.xpath("./@href").extract_first()
22             items["ymt_bigsort_id"] =                     items["ymt_bigsort_href"].replace("http://hangqing.ymt.com/common/nav_chandi_", "")
23             items["ymt_bigsort_name"] = a.xpath("./text()").extract_first()
24 
25             # 发送详情页的请求
26             yield scrapy.Request(
27                 items["ymt_bigsort_href"],
28                 callback=self.parse_medium_detail,
29                 meta={"item": deepcopy(items)}
30             )
31 
32 
33     # 中分类数据  其中小类也包含在其中
34     def parse_medium_detail(self, response):
35         items = response.meta["item"]
36         li_list = response.xpath("//div[@class=‘cate_nav_wrap‘]//a")
37         for li in li_list:
38             items["ymt_mediumsort_id"] = li.xpath("./@data-id").extract_first()
39             items["ymt_mediumsort_name"] = li.xpath("./text()").extract_first()
40             yield scrapy.Request(
41                 items["ymt_bigsort_href"],
42                 callback=self.parse_small_detail,
43                 meta={"item": deepcopy(items)},
44                 dont_filter=True
45             )
46 
47     # 小分类数据
48     def parse_small_detail(self, response):
49         item = response.meta["item"]
50         mediumsort_id = item["ymt_mediumsort_id"]
51         if int(mediumsort_id) > 0:
52             nav_product_id = "nav-product-" + mediumsort_id
53             a_list = response.xpath("//div[@class=‘cate_content_1‘]//div[contains(@class,‘{}‘)]//ul//a".format(nav_product_id))
54             for a in a_list:
55                 item["ymt_smallsort_id"] = a.xpath("./@data-id").extract_first()
56                 item["ymt_smallsort_href"] = a.xpath("./@href").extract_first()
57                 item["ymt_smallsort_name"] = a.xpath("./text()").extract_first()
58                 yield scrapy.Request(
59                     item["ymt_smallsort_href"],
60                     callback=self.parse_variety_detail,
61                     meta={"item": deepcopy(item)}
62                 )
63 
64     # 品种数据
65     def parse_variety_detail(self, response):
66         item = response.meta["item"]
67         li_list = response.xpath("//ul[@class=‘all_cate clearfix‘]//li")
68         if len(li_list) > 0:
69             for li in li_list:
70                 item["ymt_breed_href"] = li.xpath("./a/@href").extract_first()
71                 item["ymt_breed_name"] = li.xpath("./a/text()").extract_first()
72                 item["ymt_breed_id"] = item["ymt_breed_href"].split("_")[2]
73 
74                 yield item
75 
76         else:
77             item["ymt_breed_href"] = ""
78             item["ymt_breed_name"] = ""
79             item["ymt_breed_id"] = -1
80 
81             yield item
View Code

3.产地数据

      抓取省份、城市、县市  chandi.py

技术分享图片
 1 # -*- coding: utf-8 -*-
 2 import scrapy
 3 from mySpider.items import MyspiderChanDi
 4 from copy import deepcopy
 5 
 6 
 7 class ChandiSpider(scrapy.Spider):
 8     name = chandi
 9     allowed_domains = [hangqing.ymt.com]
10     start_urls = [http://hangqing.ymt.com/chandi_8031_0_0]
11 
12     # 省份数据
13     def parse(self, response):
14         # 产地列表
15         li_list = response.xpath("//div[@class=‘fl sku_name‘]/ul//li")
16         for li in li_list:
17             items = MyspiderChanDi()
18             items["ymt_province_href"] = li.xpath("./a/@href").extract_first()
19             items["ymt_province_id"] = items["ymt_province_href"].split("_")[-1]
20             items["ymt_province_name"] = li.xpath("./a/text()").extract_first()
21 
22             yield scrapy.Request(
23                 items["ymt_province_href"],
24                 callback=self.parse_city_detail,
25                 meta={"item": deepcopy(items)}
26             )
27 
28     # 城市数据
29     def parse_city_detail(self, response):
30         item = response.meta["item"]
31         option = response.xpath("//select[@class=‘location_select‘][1]//option")
32 
33         if len(option) > 0:
34             for op in option:
35                 name = op.xpath("./text()").extract_first()
36                 if name != "全部":
37                     item["ymt_city_name"] = name
38                     item["ymt_city_href"] = op.xpath("./@data-url").extract_first()
39                     item["ymt_city_id"] = item["ymt_city_href"].split("_")[-1]
40                     yield scrapy.Request(
41                         item["ymt_city_href"],
42                         callback=self.parse_area_detail,
43                         meta={"item": deepcopy(item)}
44                     )
45         else:
46             item["ymt_city_name"] = ""
47             item["ymt_city_href"] = ""
48             item["ymt_city_id"] = 0
49             yield scrapy.Request(
50                 item["ymt_city_href"],
51                 callback=self.parse_area_detail,
52                 meta={"item": deepcopy(item)}
53 
54             )
55 
56     # 县市数据
57     def parse_area_detail(self, response):
58         item = response.meta["item"]
59         area_list = response.xpath("//select[@class=‘location_select‘][2]//option")
60 
61         if len(area_list) > 0:
62             for area in area_list:
63                 name = area.xpath("./text()").extract_first()
64                 if name != "全部":
65                     item["ymt_area_name"] = name
66                     item["ymt_area_href"] = area.xpath("./@data-url").extract_first()
67                     item["ymt_area_id"] = item["ymt_area_href"].split("_")[-1]
68                     yield item
69         else:
70             item["ymt_area_name"] = ""
71             item["ymt_area_href"] = ""
72             item["ymt_area_id"] = 0
73             yield item
View Code

4.行情分布

  location_char.py

技术分享图片
  1 # -*- coding: utf-8 -*-
  2 import scrapy
  3 import pymysql
  4 import json
  5 from copy import deepcopy
  6 from mySpider.items import MySpiderSmallProvincePrice
  7 import datetime
  8 
  9 
 10 class LocationCharSpider(scrapy.Spider):
 11     name = location_char
 12     allowed_domains = [hangqing.ymt.com]
 13     start_urls = [http://hangqing.ymt.com/]
 14 
 15     i = datetime.datetime.now()
 16     dateKey = str(i.year) + str(i.month) + str(i.day)
 17     db = pymysql.connect(
 18         host="127.0.0.1", port=3306,
 19         user=root, password=mysql,
 20         db=ymt_db, charset=utf8
 21     )
 22 
 23     def parse(self, response):
 24         cur = self.db.cursor()
 25         location_char_sql = "select small_id from ymt_price_small where dateKey = {} and day_avg_price > 0".format(self.dateKey)
 26 
 27         cur.execute(location_char_sql)
 28         location_chars = cur.fetchall()
 29         for ch in location_chars:
 30             item = MySpiderSmallProvincePrice()
 31             item["small_id"] = ch[0]
 32             location_char_url = "http://hangqing.ymt.com/chandi/location_charts"
 33             small_id = str(item["small_id"])
 34             form_data = {
 35                 "locationId": "0",
 36                 "productId": small_id,
 37                 "breedId": "0"
 38             }
 39             yield scrapy.FormRequest(
 40                 location_char_url,
 41                 formdata=form_data,
 42                 callback=self.location_char,
 43                 meta={"item": deepcopy(item)}
 44             )
 45 
 46     def location_char(self, response):
 47         item = response.meta["item"]
 48 
 49         html_str = json.loads(response.text)
 50         status = html_str["status"]
 51         if status == 0:
 52             item["unit"] = html_str["data"]["unit"]
 53             item["dateKey"] = self.dateKey
 54             dataList = html_str["data"]["dataList"]
 55             for data in dataList:
 56                 if type(data) == type([]):
 57                     item["province_name"] = data[0]
 58                     item["province_price"] = data[1]
 59                 elif type(data) == type({}):
 60                     item["province_name"] = data["name"]
 61                     item["province_price"] = data["y"]
 62 
 63                 location_char_url = "http://hangqing.ymt.com/chandi/location_charts"
 64                 small_id = str(item["small_id"])
 65                 province_name = str(item["province_name"])
 66                 province_id_sql = "select province_id from ymt_1_dim_cdProvince where province_name = \"{}\" ".format(province_name)
 67                 cur = self.db.cursor()
 68                 cur.execute(province_id_sql)
 69                 province_id = cur.fetchone()
 70 
 71                 item["province_id"] = province_id[0]
 72 
 73                 province_id = str(province_id[0])
 74                 form_data = {
 75                     "locationId": province_id,
 76                     "productId": small_id,
 77                     "breedId": "0"
 78                 }
 79                 yield scrapy.FormRequest(
 80                     location_char_url,
 81                     formdata=form_data,
 82                     callback=self.location_char_province,
 83                     meta={"item": deepcopy(item)}
 84                 )
 85 
 86     def location_char_province(self, response):
 87         item = response.meta["item"]
 88 
 89         html_str = json.loads(response.text)
 90         status = html_str["status"]
 91 
 92         if status == 0:
 93             dataList = html_str["data"]["dataList"]
 94             for data in dataList:
 95                 if type(data) == type([]):
 96                     item["city_name"] = data[0]
 97                     item["city_price"] = data[1]
 98                 elif type(data) == type({}):
 99                     item["city_name"] = data["name"]
100                     item["city_price"] = data["y"]
101 
102                 location_char_url = "http://hangqing.ymt.com/chandi/location_charts"
103                 small_id = str(item["small_id"])
104                 city_name = str(item["city_name"])
105                 city_id_sql = "select city_id from ymt_1_dim_cdCity where city_name = \"{}\" ".format(city_name)
106                 cur = self.db.cursor()
107                 cur.execute(city_id_sql)
108                 city_id = cur.fetchone()
109 
110                 item["city_id"] = city_id[0]
111 
112                 city_id = str(city_id[0])
113                 form_data = {
114                     "locationId": city_id,
115                     "productId": small_id,
116                     "breedId": "0"
117                 }
118                 yield scrapy.FormRequest(
119                     location_char_url,
120                     formdata=form_data,
121                     callback=self.location_char_province_city,
122                     meta={"item": deepcopy(item)}
123                 )
124 
125     def location_char_province_city(self, response):
126         item = response.meta["item"]
127 
128         html_str = json.loads(response.text)
129         status = html_str["status"]
130 
131         if status == 0:
132             dataList = html_str["data"]["dataList"]
133             for data in dataList:
134                 if type(data) == type([]):
135                     item["area_name"] = data[0]
136                     item["area_price"] = data[1]
137                 elif type(data) == type({}):
138                     item["area_name"] = data["name"]
139                     item["area_price"] = data["y"]
140                 area_name = item["area_name"]
141                 area_id_sql = "select area_id from ymt_1_dim_cdArea where area_name = \"{}\" ".format(area_name)
142                 cur1 = self.db.cursor()
143                 cur1.execute(area_id_sql)
144                 area_id = cur1.fetchone()
145 
146                 item["area_id"] = area_id[0]
147 
148                 breed_id_sql = "select breed_id from ymt_all_info_sort where small_id = {} and breed_id > 0".format(item["small_id"])
149                 cur1.execute(breed_id_sql)
150                 breed_ids = cur1.fetchall()
151                 # print(len(breed_ids))
152                 location_char_url = "http://hangqing.ymt.com/chandi/location_charts"
153                 for breed_id in breed_ids:
154                     item["breed_id"] = breed_id[0]
155                     form_data = {
156                         "locationId": str(item["city_id"]),
157                         "productId": str(item["small_id"]),
158                         "breedId": str(breed_id[0])
159                     }
160                     # print(form_data, breed_id)
161                     yield scrapy.FormRequest(
162                         location_char_url,
163                         formdata=form_data,
164                         callback=self.location_char_province_city_breed,
165                         meta={"item": deepcopy(item)}
166                     )
167 
168     def location_char_province_city_breed(self, response):
169         item = response.meta["item"]
170 
171         html_str = json.loads(response.text)
172         status = html_str["status"]
173 
174         if status == 0:
175             dataList = html_str["data"]["dataList"]
176             for data in dataList:
177                 if type(data) == type([]):
178                     item["breed_city_name"] = data[0]
179                     item["breed_city_price"] = data[1]
180                 elif type(data) == type({}):
181                     item["breed_city_name"] = data["name"]
182                     item["breed_city_price"] = data["y"]
183 
184                 yield item
View Code

5.价格走势

  pricedata.py

技术分享图片
 1     # -*- coding: utf-8 -*-
 2 import scrapy
 3 import pymysql.cursors
 4 from copy import deepcopy
 5 from mySpider.items import MySpiderSmallprice
 6 
 7 import datetime
 8 import json
 9 
10 
11 class PricedataSpider(scrapy.Spider):
12     name = pricedata
13     allowed_domains = [hangqing.ymt.com]
14     start_urls = [http://hangqing.ymt.com/chandi_8031_0_0]
15     i = datetime.datetime.now()
16 
17     def parse(self, response):
18         db = pymysql.connect(
19             host="127.0.0.1", port=3306,
20             user=root, password=mysql,
21             db=ymt_db, charset=utf8
22         )
23         cur = db.cursor()
24 
25         all_small_sql = "select distinct small_id,small_name,small_href from ymt_all_info_sort"
26 
27         cur.execute(all_small_sql)
28         small_all = cur.fetchall()
29 
30         for small in small_all:
31             item = MySpiderSmallprice()
32             item["small_href"] = small[2]
33             # item["small_name"] = small[1]
34             item["small_id"] = small[0]
35             yield scrapy.Request(
36                 item["small_href"],
37                 callback=self.small_breed_info,
38                 meta={"item": deepcopy(item)}
39             )
40 
41     def small_breed_info(self, response):
42         item = response.meta["item"]
43         item["day_avg_price"] = response.xpath("//dd[@class=‘c_origin_price‘]/p[2]//span[1]/text()").extract_first()
44         item["unit"] = response.xpath("//dd[@class=‘c_origin_price‘]/p[2]//span[2]/text()").extract_first()
45         item["dateKey"] = str(self.i.year)+str(self.i.month)+str(self.i.day)
46 
47         if item["day_avg_price"] is None:
48             item["day_avg_price"] = 0
49             item["unit"] = ""
50 
51         yield item
View Code

6.设计字典

  items.py

技术分享图片
 1 # -*- coding: utf-8 -*-
 2 
 3 # Define here the models for your scraped items
 4 #
 5 # See documentation in:
 6 # http://doc.scrapy.org/en/latest/topics/items.html
 7 
 8 import scrapy
 9 
10 # 行情爬虫字段
11 
12 
13 class MyspiderItem(scrapy.Item):
14     ymt_bigsort_href = scrapy.Field()
15     ymt_bigsort_id = scrapy.Field()
16     ymt_bigsort_name = scrapy.Field()
17     ymt_mediumsort_id = scrapy.Field()
18     ymt_mediumsort_name = scrapy.Field()
19     ymt_smallsort_id = scrapy.Field()
20     ymt_smallsort_href = scrapy.Field()
21     ymt_smallsort_name = scrapy.Field()
22     ymt_breed_id = scrapy.Field()
23     ymt_breed_name = scrapy.Field()
24     ymt_breed_href = scrapy.Field()
25 
26 
27 # 产地爬虫字段
28 
29 
30 class MyspiderChanDi(scrapy.Item):
31     ymt_province_id = scrapy.Field()
32     ymt_province_name = scrapy.Field()
33     ymt_province_href = scrapy.Field()
34     ymt_city_id = scrapy.Field()
35     ymt_city_name = scrapy.Field()
36     ymt_city_href = scrapy.Field()
37     ymt_area_id = scrapy.Field()
38     ymt_area_name = scrapy.Field()
39     ymt_area_href = scrapy.Field()
40 
41 # 小类产地价格
42 
43 
44 class MySpiderSmallprice(scrapy.Item):
45     small_href = scrapy.Field()
46     small_id = scrapy.Field()
47     day_avg_price = scrapy.Field()
48     unit = scrapy.Field()
49     dateKey = scrapy.Field()
50 
51 # 小分类 省份/城市/县市 价格
52 
53 
54 class MySpiderSmallProvincePrice(scrapy.Item):
55     small_id = scrapy.Field()
56     unit = scrapy.Field()
57     province_name = scrapy.Field()
58     province_price = scrapy.Field()  # 小类 省份 均价
59     province_id = scrapy.Field()
60     city_name = scrapy.Field()
61     city_price = scrapy.Field()      # 小类 城市 均价
62     city_id = scrapy.Field()
63     area_name = scrapy.Field()
64     area_price = scrapy.Field()      # 小类 县市均价
65     area_id = scrapy.Field()
66 
67     breed_city_name = scrapy.Field()
68     breed_city_price = scrapy.Field()
69     breed_id = scrapy.Field()
70 
71     dateKey = scrapy.Field()
View Code

7.数据入库

  pipelines.py

技术分享图片
 1 # -*- coding: utf-8 -*-
 2 
 3 from pymongo import MongoClient
 4 import pymysql.cursors
 5 
 6 
 7 class MyspiderPipeline(object):
 8     def open_spider(self, spider):
 9         # client = MongoClient(host=spider.settings["MONGO_HOST"], port=spider.settings["MONGO_PORT"])
10         # self.collection = client["ymt"]["hangqing"]
11         pass
12 
13     def process_item(self, item, spider):
14         db = pymysql.connect(
15             host="127.0.0.1", port=3306,
16             user=root, password=mysql,
17             db=ymt_db, charset=utf8
18         )
19         cur = db.cursor()
20 
21         if spider.name == "hangqing":
22 
23             # 所有 分类数据
24             all_sort_sql = "insert into ymt_all_info_sort(big_id, big_name, big_href, " 25                            "medium_id, medium_name, " 26                            "small_id, small_name, small_href, " 27                            "breed_id, breed_name, breed_href) " 28                            "VALUES({},\"{}\",\"{}\",\"{}\",\"{}\",\"{}\",\"{}\",\"{}\",\"{}\",\"{}\",\"{}\")".format(
29                 item["ymt_bigsort_id"], item["ymt_bigsort_name"], item["ymt_bigsort_href"],
30                 item["ymt_mediumsort_id"], item["ymt_mediumsort_name"],
31                 item["ymt_smallsort_id"], item["ymt_smallsort_name"], item["ymt_smallsort_href"],
32                 item["ymt_breed_id"], item["ymt_breed_name"], item["ymt_breed_href"])
33 
34             try:
35                 cur.execute(all_sort_sql)
36                 db.commit()
37 
38             except Exception as e:
39                 db.rollback()
40             finally:
41                 cur.close()
42                 db.close()
43 
44             return item
45 
46         elif spider.name == "chandi":
47 
48             # 所有的产地数据
49             all_cd_sql = "insert into ymt_all_info_cd(" 50                          "province_id, province_name, province_href, " 51                          "city_id, city_name, city_href," 52                          "area_id, area_name, area_href) " 53                          "VALUES({},\"{}\",\"{}\",{},\"{}\",\"{}\",{},\"{}\",\"{}\")".format(
54                 item["ymt_province_id"], item["ymt_province_name"], item["ymt_province_href"],
55                 item["ymt_city_id"], item["ymt_city_name"], item["ymt_city_href"],
56                 item["ymt_area_id"], item["ymt_area_name"], item["ymt_area_href"])
57             try:
58                 # 产地数据
59                 cur.execute(all_cd_sql)
60                 db.commit()
61             except Exception as e:
62                 db.rollback()
63 
64             finally:
65                 cur.close()
66                 db.close()
67 
68             return item
69 
70         elif spider.name == "pricedata":
71             avg_day_price_sql = "insert into ymt_price_small(small_href, small_id, day_avg_price, unit, dateKey) " 72                                 "VALUES(\"{}\",{},{},\"{}\",\"{}\")".format(item["small_href"], item["small_id"], item["day_avg_price"], item["unit"], item["dateKey"])
73             try:
74                 cur.execute(avg_day_price_sql)
75                 db.commit()
76             except Exception as e:
77                 db.rollback()
78             finally:
79                 cur.close()
80                 db.close()
81 
82         elif spider.name == "location_char":
83             location_char_sql = "insert into ymt_price_provice(small_id, province_name, provice_price, city_name, city_price, area_name, area_price,unit, dateKey, area_id, city_id, provice_id, breed_city_name, breed_city_price, breed_id) " 84                                 "VALUES({},\"{}\",{},\"{}\",{},\"{}\",{},\"{}\",{},{},{},{},\"{}\",{},{})".format(item["small_id"], item["province_name"], item["province_price"], item["city_name"], item["city_price"],
85                                                                                             item["area_name"], item["area_price"], item["unit"], item["dateKey"],
86                                                                                             item["area_id"], item["city_id"], item["province_id"],
87                                                                                             item["breed_city_name"], item["breed_city_price"], item["breed_id"])
88             try:
89                 cur.execute(location_char_sql)
90                 db.commit()
91             except Exception as e:
92                 db.rollback()
93             finally:
94                 cur.close()
95                 db.close()
96 
97         else:
98             cur.close()
99             db.close()
View Code

 

最后结果

       出于个人兴趣,最后把爬取下来的农产品信息变成了一个WEB系统。

技术分享图片

FocusBI: 使用Python爬虫为BI准备数据源(原创)

原文:https://www.cnblogs.com/focusBI/p/9482016.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!