首页 > 其他 > 详细

AVL树

时间:2014-07-24 10:01:43      阅读:363      评论:0      收藏:0      [点我收藏+]

实现:

  1 #ifndef AVL_TREE_H
  2 #define AVL_TREE_H
  3 
  4 #include "dsexceptions.h"
  5 #include <iostream>    // For NULL
  6 using namespace std;
  7 
  8 // AvlTree class
  9 //
 10 // CONSTRUCTION: with ITEM_NOT_FOUND object used to signal failed finds
 11 //
 12 // ******************PUBLIC OPERATIONS*********************
 13 // void insert( x )       --> Insert x
 14 // void remove( x )       --> Remove x (unimplemented)
 15 // bool contains( x )     --> Return true if x is present
 16 // Comparable findMin( )  --> Return smallest item
 17 // Comparable findMax( )  --> Return largest item
 18 // boolean isEmpty( )     --> Return true if empty; else false
 19 // void makeEmpty( )      --> Remove all items
 20 // void printTree( )      --> Print tree in sorted order
 21 // ******************ERRORS********************************
 22 // Throws UnderflowException as warranted
 23 
 24 template <typename Comparable>
 25 class AvlTree
 26 {
 27   public:
 28     AvlTree( ) : root( NULL )
 29       { }
 30     AvlTree( const AvlTree & rhs ) : root( NULL )
 31     {
 32         *this = rhs;
 33     }
 34 
 35     ~AvlTree( )
 36     {
 37         makeEmpty( );
 38     }
 39 
 40     /**
 41      * Find the smallest item in the tree.
 42      * Throw UnderflowException if empty.
 43      */
 44     const Comparable & findMin( ) const
 45     {
 46         if( isEmpty( ) )
 47             throw UnderflowException( );
 48         return findMin( root )->element;
 49     }
 50 
 51     /**
 52      * Find the largest item in the tree.
 53      * Throw UnderflowException if empty.
 54      */
 55     const Comparable & findMax( ) const
 56     {
 57         if( isEmpty( ) )
 58             throw UnderflowException( );
 59         return findMax( root )->element;
 60     }
 61 
 62     /**
 63      * Returns true if x is found in the tree.
 64      */
 65     bool contains( const Comparable & x ) const
 66     {
 67         return contains( x, root );
 68     }
 69 
 70     /**
 71      * Test if the tree is logically empty.
 72      * Return true if empty, false otherwise.
 73      */
 74     bool isEmpty( ) const
 75     {
 76         return root == NULL;
 77     }
 78 
 79     /**
 80      * Print the tree contents in sorted order.
 81      */
 82     void printTree( ) const
 83     {
 84         if( isEmpty( ) )
 85             cout << "Empty tree" << endl;
 86         else
 87             printTree( root );
 88     }
 89 
 90     /**
 91      * Make the tree logically empty.
 92      */
 93     void makeEmpty( )
 94     {
 95         makeEmpty( root );
 96     }
 97 
 98     /**
 99      * Insert x into the tree; duplicates are ignored.
100      */
101     void insert( const Comparable & x )
102     {
103         insert( x, root );
104     }
105      
106     /**
107      * Remove x from the tree. Nothing is done if x is not found.
108      */
109     void remove( const Comparable & x )
110     {
111         cout << "Sorry, remove unimplemented; " << x <<
112                 " still present" << endl;
113     }
114 
115     /**
116      * Deep copy.
117      */
118     const AvlTree & operator=( const AvlTree & rhs )
119     {
120         if( this != &rhs )
121         {
122             makeEmpty( );
123             root = clone( rhs.root );
124         }
125         return *this;
126     }
127 
128   private:
129     struct AvlNode
130     {
131         Comparable element;
132         AvlNode   *left;
133         AvlNode   *right;
134         int       height;
135 
136         AvlNode( const Comparable & theElement, AvlNode *lt,
137                                                 AvlNode *rt, int h = 0 )
138           : element( theElement ), left( lt ), right( rt ), height( h ) { }
139     };
140 
141     AvlNode *root;
142 
143 
144     /**
145      * Internal method to insert into a subtree.
146      * x is the item to insert.
147      * t is the node that roots the subtree.
148      * Set the new root of the subtree.
149      */
150     void insert( const Comparable & x, AvlNode * & t )
151     {
152         if( t == NULL )
153             t = new AvlNode( x, NULL, NULL );
154         else if( x < t->element )
155         {
156             insert( x, t->left );
157             if( height( t->left ) - height( t->right ) == 2 )
158                 if( x < t->left->element )
159                     rotateWithLeftChild( t );
160                 else
161                     doubleWithLeftChild( t );
162         }
163         else if( t->element < x )
164         {
165             insert( x, t->right );
166             if( height( t->right ) - height( t->left ) == 2 )
167                 if( t->right->element < x )
168                     rotateWithRightChild( t );
169                 else
170                     doubleWithRightChild( t );
171         }
172         else
173             ;  // Duplicate; do nothing
174         t->height = max( height( t->left ), height( t->right ) ) + 1;
175     }
176 
177     /**
178      * Internal method to find the smallest item in a subtree t.
179      * Return node containing the smallest item.
180      */
181     AvlNode * findMin( AvlNode *t ) const
182     {
183         if( t == NULL )
184             return NULL;
185         if( t->left == NULL )
186             return t;
187         return findMin( t->left );
188     }
189 
190     /**
191      * Internal method to find the largest item in a subtree t.
192      * Return node containing the largest item.
193      */
194     AvlNode * findMax( AvlNode *t ) const
195     {
196         if( t != NULL )
197             while( t->right != NULL )
198                 t = t->right;
199         return t;
200     }
201 
202 
203     /**
204      * Internal method to test if an item is in a subtree.
205      * x is item to search for.
206      * t is the node that roots the tree.
207      */
208     bool contains( const Comparable & x, AvlNode *t ) const
209     {
210         if( t == NULL )
211             return false;
212         else if( x < t->element )
213             return contains( x, t->left );
214         else if( t->element < x )
215             return contains( x, t->right );
216         else
217             return true;    // Match
218     }
219 /****** NONRECURSIVE VERSION*************************
220     bool contains( const Comparable & x, AvlNode *t ) const
221     {
222         while( t != NULL )
223             if( x < t->element )
224                 t = t->left;
225             else if( t->element < x )
226                 t = t->right;
227             else
228                 return true;    // Match
229 
230         return false;   // No match
231     }
232 *****************************************************/
233 
234     /**
235      * Internal method to make subtree empty.
236      */
237     void makeEmpty( AvlNode * & t )
238     {
239         if( t != NULL )
240         {
241             makeEmpty( t->left );
242             makeEmpty( t->right );
243             delete t;
244         }
245         t = NULL;
246     }
247 
248     /**
249      * Internal method to print a subtree rooted at t in sorted order.
250      */
251     void printTree( AvlNode *t ) const
252     {
253         if( t != NULL )
254         {
255             printTree( t->left );
256             cout << t->element << endl;
257             printTree( t->right );
258         }
259     }
260 
261     /**
262      * Internal method to clone subtree.
263      */
264     AvlNode * clone( AvlNode *t ) const
265     {
266         if( t == NULL )
267             return NULL;
268         else
269             return new AvlNode( t->element, clone( t->left ), clone( t->right ), t->height );
270     }
271         // Avl manipulations
272     /**
273      * Return the height of node t or -1 if NULL.
274      */
275     int height( AvlNode *t ) const
276     {
277         return t == NULL ? -1 : t->height;
278     }
279 
280     int max( int lhs, int rhs ) const
281     {
282         return lhs > rhs ? lhs : rhs;
283     }
284 
285     /**
286      * Rotate binary tree node with left child.
287      * For AVL trees, this is a single rotation for case 1.
288      * Update heights, then set new root.
289      */
290     void rotateWithLeftChild( AvlNode * & k2 )
291     {
292         AvlNode *k1 = k2->left;
293         k2->left = k1->right;
294         k1->right = k2;
295         k2->height = max( height( k2->left ), height( k2->right ) ) + 1;
296         k1->height = max( height( k1->left ), k2->height ) + 1;
297         k2 = k1;
298     }
299 
300     /**
301      * Rotate binary tree node with right child.
302      * For AVL trees, this is a single rotation for case 4.
303      * Update heights, then set new root.
304      */
305     void rotateWithRightChild( AvlNode * & k1 )
306     {
307         AvlNode *k2 = k1->right;
308         k1->right = k2->left;
309         k2->left = k1;
310         k1->height = max( height( k1->left ), height( k1->right ) ) + 1;
311         k2->height = max( height( k2->right ), k1->height ) + 1;
312         k1 = k2;
313     }
314 
315     /**
316      * Double rotate binary tree node: first left child.
317      * with its right child; then node k3 with new left child.
318      * For AVL trees, this is a double rotation for case 2.
319      * Update heights, then set new root.
320      */
321     void doubleWithLeftChild( AvlNode * & k3 )
322     {
323         rotateWithRightChild( k3->left );
324         rotateWithLeftChild( k3 );
325     }
326 
327     /**
328      * Double rotate binary tree node: first right child.
329      * with its left child; then node k1 with new right child.
330      * For AVL trees, this is a double rotation for case 3.
331      * Update heights, then set new root.
332      */
333     void doubleWithRightChild( AvlNode * & k1 )
334     {
335         rotateWithLeftChild( k1->right );
336         rotateWithRightChild( k1 );
337     }
338 };
339 
340 #endif

测试:

 1 #include <iostream>
 2 #include "AvlTree.h"
 3 using namespace std;
 4 
 5     // Test program
 6 int main( )
 7 {
 8     AvlTree<int> t, t2;
 9     int NUMS = 400000;
10     const int GAP  =   37;
11     int i;
12 
13     cout << "Checking... (no more output means success)" << endl;
14 
15     for( i = GAP; i != 0; i = ( i + GAP ) % NUMS )
16         t.insert( i );
17 
18     if( NUMS < 40 )
19         t.printTree( );
20     if( t.findMin( ) != 1 || t.findMax( ) != NUMS - 1 )
21         cout << "FindMin or FindMax error!" << endl;
22 
23     t2 = t;
24 
25     for( i = 1; i < NUMS; i++ )
26         if( !t2.contains( i ) )
27             cout << "Find error1!" << endl;
28     if( t2.contains( 0 ) )
29         cout << "ITEM_NOT_FOUND failed!" << endl;
30 
31     cout << "Test finished" << endl;
32     return 0;
33 }

AVL树,布布扣,bubuko.com

AVL树

原文:http://www.cnblogs.com/dracohan/p/3864638.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!