给出N,统计满足下面条件的数对(a,b)的个数:
1.1<=a<b<=N
2.a+b整除a*b
1.1<=a<b<=N
2.a+b整除a*b
一行一个数N
一行一个数表示答案
数据规模和约定
Test N Test N
1 <=10 11 <=5*10^7
2 <=50 12 <=10^8
3 <=10^3 13 <=2*10^8
4 <=5*10^3 14 <=3*10^8
5 <=2*10^4 15 <=5*10^8
6 <=2*10^5 16 <=10^9
7 <=2*10^6 17 <=10^9
8 <=10^7 18 <=2^31-1
9 <=2*10^7 19 <=2^31-1
10 <=3*10^7 20 <=2^31-1
#include<iostream> #include<algorithm> #include<cstdio> #include<cmath> #define MAXN 100010 using namespace std; long long n; int k=0,prime[MAXN],mu[MAXN]; bool np[MAXN]; inline long long read(){ long long date=0,w=1;char c=0; while(c<‘0‘||c>‘9‘){if(c==‘-‘)w=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){date=date*10+c-‘0‘;c=getchar();} return date*w; } void make(){ int m=MAXN-10; mu[1]=1; for(int i=2;i<=m;i++){ if(!np[i]){ prime[++k]=i; mu[i]=-1; } for(int j=1;j<=k&&prime[j]*i<=m;j++){ np[prime[j]*i]=true; if(i%prime[j]==0)break; mu[prime[j]*i]=-mu[i]; } } } long long calculate(int n,int m){ long long s=0; for(int i=1;i<=m;i++){ int t=n/i; for(int j=i+1,last;j<(i<<1)&&j<=t;j=last+1){ last=min((i<<1)-1,t/(t/j)); s+=1LL*(last-j+1)*(t/j); } } return s; } long long solve(long long n){ long long ans=0,m=sqrt(n); for(int i=1;i<=m;i++)ans+=1LL*mu[i]*calculate(n/i/i,m/i); return ans; } int main(){ make(); n=read(); printf("%lld\n",solve(n)); return 0; }
原文:https://www.cnblogs.com/Yangrui-Blog/p/9498519.html