给出N,统计满足下面条件的数对(a,b)的个数:
1.1<=a<b<=N
2.a+b整除a*b
1.1<=a<b<=N
2.a+b整除a*b
一行一个数N
一行一个数表示答案
数据规模和约定
Test N Test N
1 <=10 11 <=5*10^7
2 <=50 12 <=10^8
3 <=10^3 13 <=2*10^8
4 <=5*10^3 14 <=3*10^8
5 <=2*10^4 15 <=5*10^8
6 <=2*10^5 16 <=10^9
7 <=2*10^6 17 <=10^9
8 <=10^7 18 <=2^31-1
9 <=2*10^7 19 <=2^31-1
10 <=3*10^7 20 <=2^31-1
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cmath>
#define MAXN 100010
using namespace std;
long long n;
int k=0,prime[MAXN],mu[MAXN];
bool np[MAXN];
inline long long read(){
long long date=0,w=1;char c=0;
while(c<‘0‘||c>‘9‘){if(c==‘-‘)w=-1;c=getchar();}
while(c>=‘0‘&&c<=‘9‘){date=date*10+c-‘0‘;c=getchar();}
return date*w;
}
void make(){
int m=MAXN-10;
mu[1]=1;
for(int i=2;i<=m;i++){
if(!np[i]){
prime[++k]=i;
mu[i]=-1;
}
for(int j=1;j<=k&&prime[j]*i<=m;j++){
np[prime[j]*i]=true;
if(i%prime[j]==0)break;
mu[prime[j]*i]=-mu[i];
}
}
}
long long calculate(int n,int m){
long long s=0;
for(int i=1;i<=m;i++){
int t=n/i;
for(int j=i+1,last;j<(i<<1)&&j<=t;j=last+1){
last=min((i<<1)-1,t/(t/j));
s+=1LL*(last-j+1)*(t/j);
}
}
return s;
}
long long solve(long long n){
long long ans=0,m=sqrt(n);
for(int i=1;i<=m;i++)ans+=1LL*mu[i]*calculate(n/i/i,m/i);
return ans;
}
int main(){
make();
n=read();
printf("%lld\n",solve(n));
return 0;
}
原文:https://www.cnblogs.com/Yangrui-Blog/p/9498519.html