首页 > 其他 > 详细

POJ 3662 (二分+SPFA

时间:2018-08-19 20:27:28      阅读:181      评论:0      收藏:0      [点我收藏+]
Telephone Lines
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8856   Accepted: 3211

Description

Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncooperative, so he needs to pay for some of the cables required to connect his farm to the phone system.

There are N (1 ≤ N ≤ 1,000) forlorn telephone poles conveniently numbered 1..N that are scattered around Farmer John‘s property; no cables connect any them. A total of P (1 ≤ P ≤ 10,000) pairs of poles can be connected by a cable; the rest are too far apart.

The i-th cable can connect the two distinct poles Ai and Bi, with length Li (1 ≤ Li ≤ 1,000,000) units if used. The input data set never names any {AiBi} pair more than once. Pole 1 is already connected to the phone system, and pole N is at the farm. Poles 1 and need to be connected by a path of cables; the rest of the poles might be used or might not be used.

As it turns out, the phone company is willing to provide Farmer John with K (0 ≤ K < N) lengths of cable for free. Beyond that he will have to pay a price equal to the length of the longest remaining cable he requires (each pair of poles is connected with a separate cable), or 0 if he does not need any additional cables.

Determine the minimum amount that Farmer John must pay.

Input

* Line 1: Three space-separated integers: NP, and K
* Lines 2..P+1: Line i+1 contains the three space-separated integers: AiBi, and Li

Output

* Line 1: A single integer, the minimum amount Farmer John can pay. If it is impossible to connect the farm to the phone company, print -1.

Sample Input

5 7 1
1 2 5
3 1 4
2 4 8
3 2 3
5 2 9
3 4 7
4 5 6

Sample Output

4

Source

题意:求一条路径从1到n使第k+1大的边最小。
思路:二分第k+1大的路径长度mid,大于mid的边标记为1,否则标记为0,跑一遍SPFA,当d[n]<=k就为满足条件,取最小的mid。
代码:
 1 #include"bits/stdc++.h"
 2 #define db double
 3 #define ll long long
 4 #define vl vector<ll>
 5 #define ci(x) scanf("%d",&x)
 6 #define cd(x) scanf("%lf",&x)
 7 #define cl(x) scanf("%lld",&x)
 8 #define pi(x) printf("%d\n",x)
 9 #define pd(x) printf("%f\n",x)
10 #define pl(x) printf("%lld\n",x)
11 #define rep(i, n) for(int i=0;i<n;i++)
12 using namespace std;
13 const int N   = 1e6 + 5;
14 const int mod = 1e9 + 7;
15 const int MOD = 998244353;
16 const db  PI  = acos(-1.0);
17 const db  eps = 1e-10;
18 int R()
19 {
20     int f=1,x=0;
21     char e=getchar();
22     while(e<0||e>9){if(e==-)f=-1;e=getchar();}
23     while(e>=0&&e<=9){x=x*10+e-0;e=getchar();}
24     return f*x;
25 }
26 
27 const int inf=1128481603;
28 int n,m,k;
29 struct P{int v,dis,nxt;}E[50005];
30 int head[N],tot;
31 int d[2005],vis[2005];//数组开太大会T
32 int l=0,r=1e6+10,mid;
33 
34 void add(int u,int v,int dis)
35 {
36     E[++tot].nxt=head[u];
37     E[tot].v=v; E[tot].dis=dis;
38     head[u]=tot;
39 }
40 
41 void SPFA()
42 {
43     memset(d,67,sizeof(d)); d[1]=0;
44     queue<int> q; q.push(1);
45     memset(vis,0,sizeof(vis));
46     while(!q.empty())
47     {
48         int u=q.front();
49         q.pop(); vis[u]=0;
50         for(int i=head[u];i;i=E[i].nxt)
51         {
52             int v=E[i].v,dis=(E[i].dis>mid);
53             if(d[v]>d[u]+dis)
54             {
55                 d[v]=d[u]+dis;
56                 if(!vis[v])q.push(v),vis[v]=1;
57             }
58         }
59     }
60 }
61 
62 int main()
63 {
64     n=R();m=R();k=R();
65     for(int i=1;i<=m;++i)
66     {
67         int u=R(),v=R(),dis=R();
68         add(u,v,dis);add(v,u,dis);
69     }
70     int ans=-1;
71     while(l<=r)
72     {
73         mid=(l+r)>>1;
74         SPFA();
75         if(d[n]==inf){ printf("-1"); return 0;}
76         if(d[n]<=k) ans=mid,r=mid-1;
77         else l=mid+1;
78     }
79     printf("%d",ans);
80     return 0;
81 }

 

POJ 3662 (二分+SPFA

原文:https://www.cnblogs.com/mj-liylho/p/9502436.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!