尺取法
Subsequence(POJ 3061)
Time Limit: 1000MS | Memory Limit: 65536K |
Total Submissions: 20969 | Accepted: 8948 |
Description
Input
Output
Sample Input
2 10 15 5 1 3 5 10 7 4 9 2 8 5 11 1 2 3 4 5
Sample Output
2 3
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #define num s-‘0‘ 6 7 using namespace std; 8 9 const int MAX_N=1000000; 10 const int INF=0x3f3f3f3f; 11 int n,S,t; 12 int a[MAX_N],sum[MAX_N+1]; 13 14 int min(int x, int y) 15 { 16 if (x<y) return x; 17 return y; 18 } 19 20 void read(int &x){ 21 char s; 22 x=0; 23 bool flag=0; 24 while(!isdigit(s=getchar())) 25 (s==‘-‘)&&(flag=true); 26 for(x=num;isdigit(s=getchar());x=x*10+num); 27 (flag)&&(x=-x); 28 } 29 30 void write(int x) 31 { 32 if(x<0) 33 { 34 putchar(‘-‘); 35 x=-x; 36 } 37 if(x>9) 38 write(x/10); 39 putchar(x%10+‘0‘); 40 } 41 42 int main() 43 { 44 read(t); 45 while (t>0) 46 { 47 read(n);read(S); 48 for (int i=0; i<n; i++) 49 { 50 read(a[i]); 51 sum[i+1]=sum[i]+a[i]; 52 } 53 int res=n+1; 54 for (int s=0; sum[n]-sum[s]>=S; s++) 55 { 56 int t=lower_bound(sum+s,sum+n,sum[s]+S)-sum; 57 res=min(res,t-s); 58 } 59 if (res<=n) write(res); 60 else write(0); 61 putchar(‘\n‘); 62 --t; 63 } 64 }
代码2:
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #define num s-‘0‘ 6 7 using namespace std; 8 9 const int MAX_N=1000000; 10 const int INF=0x3f3f3f3f; 11 int n,S,m; 12 int a[MAX_N]; 13 14 int min(int x, int y) 15 { 16 if (x<y) return x; 17 return y; 18 } 19 20 void read(int &x){ 21 char s; 22 x=0; 23 bool flag=0; 24 while(!isdigit(s=getchar())) 25 (s==‘-‘)&&(flag=true); 26 for(x=num;isdigit(s=getchar());x=x*10+num); 27 (flag)&&(x=-x); 28 } 29 30 void write(int x) 31 { 32 if(x<0) 33 { 34 putchar(‘-‘); 35 x=-x; 36 } 37 if(x>9) 38 write(x/10); 39 putchar(x%10+‘0‘); 40 } 41 42 int main() 43 { 44 read(m); 45 while (m>0) 46 { 47 read(n);read(S); 48 for (int i=0; i<n; i++) 49 { 50 read(a[i]); 51 } 52 int s,t,sum; 53 s=t=sum=0; 54 int res=n+1; 55 for (;;) 56 { 57 while (t<n && sum<S) sum+=a[t++]; 58 if (sum<S) break; 59 res = min(res,t-s); 60 sum-=a[s++]; 61 } 62 if (res>n) res=0; 63 write(res); 64 putchar(‘\n‘); 65 --m; 66 } 67 }
Jessica‘s Reading Problem(POJ 3320)
Time Limit: 1000MS | Memory Limit: 65536K |
Total Submissions: 16900 | Accepted: 5853 |
Description
Jessica‘s a very lovely girl wooed by lots of boys. Recently she has a problem. The final exam is coming, yet she has spent little time on it. If she wants to pass it, she has to master all ideas included in a very thick text book. The author of that text book, like other authors, is extremely fussy about the ideas, thus some ideas are covered more than once. Jessica think if she managed to read each idea at least once, she can pass the exam. She decides to read only one contiguous part of the book which contains all ideas covered by the entire book. And of course, the sub-book should be as thin as possible.
A very hard-working boy had manually indexed for her each page of Jessica‘s text-book with what idea each page is about and thus made a big progress for his courtship. Here you come in to save your skin: given the index, help Jessica decide which contiguous part she should read. For convenience, each idea has been coded with an ID, which is a non-negative integer.
Input
The first line of input is an integer P (1 ≤ P ≤ 1000000), which is the number of pages of Jessica‘s text-book. The second line contains P non-negative integers describing what idea each page is about. The first integer is what the first page is about, the second integer is what the second page is about, and so on. You may assume all integers that appear can fit well in the signed 32-bit integer type.
Output
Output one line: the number of pages of the shortest contiguous part of the book which contains all ideals covered in the book.
Sample Input
5 1 8 8 8 1
Sample Output
2
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <map> 6 #include <set> 7 #define num s-‘0‘ 8 9 using namespace std; 10 11 const int MAX_N=1000000; 12 const int INF=0x3f3f3f3f; 13 int P; 14 int a[MAX_N]; 15 16 int min(int x, int y) 17 { 18 if (x<y) return x; 19 return y; 20 } 21 22 void read(int &x){ 23 char s; 24 x=0; 25 bool flag=0; 26 while(!isdigit(s=getchar())) 27 (s==‘-‘)&&(flag=true); 28 for(x=num;isdigit(s=getchar());x=x*10+num); 29 (flag)&&(x=-x); 30 } 31 32 void write(int x) 33 { 34 if(x<0) 35 { 36 putchar(‘-‘); 37 x=-x; 38 } 39 if(x>9) 40 write(x/10); 41 putchar(x%10+‘0‘); 42 } 43 44 int main() 45 { 46 read(P); 47 set<int> all; 48 for (int i=0; i<P; i++) 49 { 50 read(a[i]); 51 all.insert(a[i]); 52 } 53 int n=all.size(); 54 int s=0, t=0, numb=0; 55 map<int, int> count; 56 int res = P; 57 for (;;) 58 { 59 while (t<P && numb<n) 60 if (count[a[t++]]++==0) numb++; 61 if (numb<n) break; 62 res=min(res,t-s); 63 if (--count[a[s++]]==0) numb--; 64 } 65 write(res); 66 }
反转(开关问题)
Face The Right Way(POJ 3276)
Time Limit: 2000MS | Memory Limit: 65536K |
Total Submissions: 6704 | Accepted: 3121 |
Description
Farmer John has arranged his N (1 ≤ N ≤ 5,000) cows in a row and many of them are facing forward, like good cows. Some of them are facing backward, though, and he needs them all to face forward to make his life perfect.
Fortunately, FJ recently bought an automatic cow turning machine. Since he purchased the discount model, it must be irrevocably preset to turn K (1 ≤ K ≤ N) cows at once, and it can only turn cows that are all standing next to each other in line. Each time the machine is used, it reverses the facing direction of a contiguous group of K cows in the line (one cannot use it on fewer than K cows, e.g., at the either end of the line of cows). Each cow remains in the same *location* as before, but ends up facing the *opposite direction*. A cow that starts out facing forward will be turned backward by the machine and vice-versa.
Because FJ must pick a single, never-changing value of K, please help him determine the minimum value of K that minimizes the number of operations required by the machine to make all the cows face forward. Also determine M, the minimum number of machine operations required to get all the cows facing forward using that value of K.
Input
Output
Sample Input
7 B B F B F B B
Sample Output
3 3
Hint
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #define num s-‘0‘ 7 8 using namespace std; 9 10 const int MAX_N=5001; 11 const int INF=0x3f3f3f3f; 12 int N; 13 int dir[MAX_N], f[MAX_N]; 14 15 void read(int &x){ 16 char s; 17 x=0; 18 bool flag=0; 19 while(!isdigit(s=getchar())) 20 (s==‘-‘)&&(flag=true); 21 for(x=num;isdigit(s=getchar());x=x*10+num); 22 (flag)&&(x=-x); 23 } 24 25 void write(int x) 26 { 27 if(x<0) 28 { 29 putchar(‘-‘); 30 x=-x; 31 } 32 if(x>9) 33 write(x/10); 34 putchar(x%10+‘0‘); 35 } 36 37 int calc(int); 38 39 int main() 40 { 41 read(N); 42 for (int i=0; i<N; i++) 43 { 44 char d; 45 scanf("%c", &d); 46 d==‘B‘? dir[i]=1: dir[i]=0; 47 scanf("%c", &d); 48 } 49 int K=1,M=N; 50 for (int k=N; k>=1; k--) 51 { 52 int m=calc(k); 53 if (m>=0 && m<M) 54 { 55 M=m; 56 K=k; 57 } 58 } 59 write(K);putchar(‘ ‘);write(M);putchar(‘\n‘); 60 } 61 62 int calc(int K) 63 { 64 memset(f, 0, sizeof(f)); 65 int res=0; 66 int sum=0; 67 for (int i=0; i<=N-K; i++) 68 { 69 if ((dir[i]+sum)%2 != 0) 70 { 71 res++; 72 f[i]=1; 73 } 74 sum+=f[i]; 75 if (i-K+1>=0) sum-=f[i-K+1]; 76 } 77 for (int i=N-K+1; i<N; i++) 78 { 79 if ((dir[i]+sum)%2!=0) return -1; 80 if (i-K+1>=0) sum-=f[i-K+1]; 81 } 82 return res; 83 }
Fliptile(POJ 3279)
Time Limit: 2000MS | Memory Limit: 65536K |
Total Submissions: 16480 | Accepted: 6016 |
Description
Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.
As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.
Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".
Input
Output
Sample Input
4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
Sample Output
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #define number s-‘0‘ 7 8 using namespace std; 9 10 const int MAX_N=16; 11 const int INF=0x3f3f3f3f; 12 const int dx[5]={-1, 0, 0, 0, 1}; 13 const int dy[5]={0, 1, 0, -1, 0}; 14 int N,M; 15 int flip[MAX_N][MAX_N], tile[MAX_N][MAX_N], opt[MAX_N][MAX_N]; 16 17 void read(int &x){ 18 char s; 19 x=0; 20 bool flag=0; 21 while(!isdigit(s=getchar())) 22 (s==‘-‘)&&(flag=true); 23 for(x=number;isdigit(s=getchar());x=x*10+number); 24 (flag)&&(x=-x); 25 } 26 27 void write(int x) 28 { 29 if(x<0) 30 { 31 putchar(‘-‘); 32 x=-x; 33 } 34 if(x>9) 35 write(x/10); 36 putchar(x%10+‘0‘); 37 } 38 39 int calc(); 40 int get(int, int); 41 42 int main() 43 { 44 read(M);read(N); 45 for (int i=0; i<M; i++) 46 for (int j=0; j<N; j++) 47 read(j[i[tile]]); 48 int res=-1; 49 for (int i=0; i< 1<<N; i++) 50 { 51 memset(flip, 0, sizeof(flip)); 52 for (int j=0; j<N; j++) 53 { 54 flip[0][N-j-1]=i>>j&1; 55 } 56 int num=calc(); 57 if (num>=0 && (res<0 || num<res)) 58 { 59 res=num; 60 memcpy(opt, flip, sizeof(flip)); 61 } 62 } 63 if (res<0) puts("IMPOSSIBLE\n"); 64 else 65 for (int i=0; i<M; i++) 66 for (int j=0; j<N; j++) 67 printf("%d%c", j[i[opt]], j+1==N? ‘\n‘: ‘ ‘); 68 } 69 70 int get(int x, int y) 71 { 72 int c=tile[x][y]; 73 for (int i=0; i<5; i++) 74 { 75 int x2=x+dx[i], y2=y+dy[i]; 76 if (0<=x2 && x2<M && 0<=y2 && y2<N) 77 { 78 c+=y2[x2[flip]]; 79 } 80 } 81 return c % 2; 82 } 83 84 int calc() 85 { 86 for (int i=1; i<M; i++) 87 { 88 for (int j=0; j<N; j++) 89 { 90 if (get(i-1,j)!=0) flip[i][j]=1; 91 } 92 } 93 for (int j=0; j<N; j++) 94 { 95 if (get(M-1,j)!=0) return -1; 96 } 97 int res=0; 98 for (int i=0; i<M; i++) 99 for (int j=0; j<N; j++) 100 res+=j[i[flip]]; 101 return res; 102 }
PS: 在上面的代码里,为了尝试第一行的所有可能性,使用了集合的整数表示,集合{0,1,…,n-1}的子集S可以编码成整数:f(S)=∑2i,像这样表示之后,一些集合运算可以对应地写成如下方式:
①空集?:……………………………………………0
②只含有1个元素i的集合{i}…………………………1<<i
③含有全部n个元素的集合…………………………(1<<n)-1
④判断第i+1个元素i是否属于集合S………………if (S>>i&1)
⑤向集合中加入第i+1个元素i(S∪{i})…………S|1<<i
⑥从集合中取出第i+1个元素(S\{i})……………S&~(1<<i)
⑦集合S和集合T的并集S∪T………………………S|T
⑧集合S和集合T的交集S∩T………………………S&T
此外,想要将集合{0,1,…,n-1}的所有自己枚举出来的话,可以这样写:
for (int S=0; S<1<<n; S++) { //对子集的处理 }
接下来,介绍如何枚举某个集合sup的子集。这里sup是一个二进制码。
(sub-1) & sup
(sub-1)&sup会忽略sup中的0而从sub中减去"1",最终sub可以将sup所有的子集按照降序生成出来。为什么不能用加?因为(sub+1)&sup虽然是sup的子集,但很可能依旧是sub,没有任何改变,而用减就不会出现这样的情况。
int sub=sup; do { //对子集进行处理 sub=(sub-1)⊃ } while (sub != sup);//处理完0之后,会有-1&sup=sup
最后,介绍如何枚举{0,1,…,n-1}所包含的所有大小为k的子集。通过位运算,按照字典序升序地枚举出所有满足条件地二进制码,先上代码:
int comb = (1<<k)-1; while (comb< 1<<n) { //这里进行针对组合的处理 int x=comb&(-comb), y=comb+x; comb=((comb&~y)/x>>1)|y; }
按照字典序的话,最小的子集是(1<<k)-1,所有用它作为初始值,下面就要求出comb之后一个二进制码了,方法如下:
①求出最低位的1开始的连续的1的区间(0101110→0001110)
②将这一区间全部变为0,并将区间左侧的那个0变为1(0101110→0110000)
③将第①步里取出的区间右移,直到剩下的1的个数减少了1个(0001110→0000011)
④将第②步和第③步的结果按位取或(0110000|0000011→0110011)
对于非零的整数,x&(-x)的值就是将其最低位的1独立出来的值,即lowbit
除上述例子外,还可以利用位运算完成满足其它条件的集合的枚举,例如不包含相邻元素的集合等
弹性碰撞
Physics Experiment(POJ 3684)
Time Limit: 1000MS | Memory Limit: 65536K | ||
Total Submissions: 3582 | Accepted: 1274 | Special Judge |
Description
Simon is doing a physics experiment with N identical balls with the same radius of R centimeters. Before the experiment, all N balls are fastened within a vertical tube one by one and the lowest point of the lowest ball is H meters above the ground. At beginning of the experiment, (at second 0), the first ball is released and falls down due to the gravity. After that, the balls are released one by one in every second until all balls have been released. When a ball hits the ground, it will bounce back with the same speed as it hits the ground. When two balls hit each other, they with exchange their velocities (both speed and direction).
Simon wants to know where are the N balls after T seconds. Can you help him?
In this problem, you can assume that the gravity is constant: g = 10 m/s2.
Input
The first line of the input contains one integer C (C ≤ 20) indicating the number of test cases. Each of the following lines contains four integers N, H, R, T.
1≤ N ≤ 100.
1≤ H ≤ 10000
1≤ R ≤ 100
1≤ T ≤ 10000
Output
For each test case, your program should output N real numbers indicating the height in meters of the lowest point of each ball separated by a single space in a single line. Each number should be rounded to 2 digit after the decimal point.
Sample Input
2 1 10 10 100 2 10 10 100
Sample Output
4.95 4.95 10.20
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #define number s-‘0‘ 7 8 using namespace std; 9 10 const int MAX_N=110; 11 const double g=10.0; 12 int K,N,H,R,T; 13 double y[MAX_N]; 14 15 void read(int &x){ 16 char s; 17 x=0; 18 bool flag=0; 19 while(!isdigit(s=getchar())) 20 (s==‘-‘)&&(flag=true); 21 for(x=number;isdigit(s=getchar());x=x*10+number); 22 (flag)&&(x=-x); 23 } 24 25 void write(int x) 26 { 27 if(x<0) 28 { 29 putchar(‘-‘); 30 x=-x; 31 } 32 if(x>9) 33 write(x/10); 34 putchar(x%10+‘0‘); 35 } 36 37 double calc(int); 38 39 int main() 40 { 41 read(K); 42 while (K>0) 43 { 44 read(N);read(H);read(R);read(T); 45 for (int i=0; i<N; i++) 46 { 47 y[i]=calc(T-i); 48 } 49 sort(y,y+N); 50 for (int i=0; i<N; i++) 51 printf("%.2f%c", y[i]+2*R*i/100.0, i+1==N? ‘\n‘: ‘ ‘); 52 K--; 53 } 54 } 55 56 double calc(int T) 57 { 58 if (T<=0) return H; 59 double t=sqrt(2*H/g); 60 int k=(int)(T/t); 61 if (k%2==0) 62 { 63 double d=T-k*t; 64 return H-g*d*d/2; 65 } 66 else 67 { 68 double d=k*t+t-T; 69 return H-g*d*d/2; 70 } 71 }
折半枚举(双向搜索)
4 Values whose Sum is 0(POJ 2785)
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 29242 | Accepted: 8886 | |
Case Time Limit: 5000MS |
Description
Input
Output
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #define number s-‘0‘ 7 8 using namespace std; 9 10 const int MAX_N=5000; 11 int A[MAX_N], B[MAX_N], C[MAX_N], D[MAX_N]; 12 int CD[MAX_N*MAX_N]; 13 int N; 14 15 void read(int &x){ 16 char s; 17 x=0; 18 bool flag=0; 19 while(!isdigit(s=getchar())) 20 (s==‘-‘)&&(flag=true); 21 for(x=number;isdigit(s=getchar());x=x*10+number); 22 (flag)&&(x=-x); 23 } 24 25 void write(int x) 26 { 27 if(x<0) 28 { 29 putchar(‘-‘); 30 x=-x; 31 } 32 if(x>9) 33 write(x/10); 34 putchar(x%10+‘0‘); 35 } 36 37 double calc(int); 38 39 int main() 40 { 41 read(N); 42 for (int i=0; i<N; i++) 43 { 44 read(A[i]);read(B[i]);read(C[i]);read(D[i]); 45 } 46 for (int i=0; i<N; i++) 47 for (int j=0; j<N; j++) 48 CD[i*N+j]=C[i]+D[j]; 49 sort(CD,CD+N*N); 50 long long res=0; 51 for (int i=0; i<N; i++) 52 for (int j=0; j<N; j++) 53 { 54 int cd=-(A[i]+B[j]); 55 res+=upper_bound(CD, CD+N*N, cd)-lower_bound(CD, CD+N*N, cd); 56 } 57 printf("%d\n", res); 58 }
超大背包问题
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #include <utility> 7 #define number s-‘0‘ 8 9 using namespace std; 10 11 const int MAX_N=50; 12 const long long INF=0x3fffffffffffffff; 13 int n; 14 long long w[MAX_N], v[MAX_N]; 15 long long W; 16 pair<long long, long long> ps[1<<(MAX_N/2)]; 17 18 void read(int &x){ 19 char s; 20 x=0; 21 bool flag=0; 22 while(!isdigit(s=getchar())) 23 (s==‘-‘)&&(flag=true); 24 for(x=number;isdigit(s=getchar());x=x*10+number); 25 (flag)&&(x=-x); 26 } 27 28 void write(int x) 29 { 30 if(x<0) 31 { 32 putchar(‘-‘); 33 x=-x; 34 } 35 if(x>9) 36 write(x/10); 37 putchar(x%10+‘0‘); 38 } 39 40 long long max(long long x, long long y) 41 { 42 if (x>y) return x; 43 return y; 44 } 45 46 int main() 47 { 48 read(n);scanf("%I64d",&W); 49 for (int i=0; i<n; i++) 50 { 51 scanf("%I64d %I64d",&w[i], &v[i]); 52 } 53 int n2=n/2; 54 for (int i=0; i<1<<n2; i++) 55 { 56 long long sw=0, sv=0; 57 for (int j=0; j<n2; j++) 58 { 59 if (i>>j&1) 60 { 61 sw+=w[j]; 62 sv+=v[j]; 63 } 64 } 65 ps[i]=make_pair(sw, sv); 66 } 67 sort(ps, ps+(1<<n2)); 68 int m=1; 69 for (int i=1; i<1<<n2; i++) 70 { 71 if (ps[m-1].second<ps[i].second) 72 { 73 ps[m++]=ps[i]; 74 } 75 } 76 long long res=0; 77 for (int i=0; i<1<<(n-n2); i++) 78 { 79 long long sw=0, sv=0; 80 for (int j=0; j<n-n2; j++) 81 { 82 if (i>>j&1) 83 { 84 sw+=w[n2+j]; 85 sv+=v[n2+j]; 86 } 87 } 88 if (sw<=W) 89 { 90 long long tv=(lower_bound(ps, ps+m, make_pair(W-sw,INF))-1)->second; 91 res=max(res,sv+tv); 92 } 93 } 94 printf("%d\n", res); 95 }
坐标离散化
1 #include <cstdio> 2 #include <cctype> 3 #include <algorithm> 4 #include <cmath> 5 #include <cstring> 6 #include <vector> 7 #include <queue> 8 #include <utility> 9 #define number s-‘0‘ 10 11 using namespace std; 12 13 const int MAX_N=600; 14 const long long INF=0x3f3f3f3f; 15 const int dx[4]{-1,0,0,1}; 16 const int dy[4]{0,1,-1,0}; 17 int N,H,W; 18 int X1[MAX_N],X2[MAX_N],Y1[MAX_N],Y2[MAX_N]; 19 bool fld[MAX_N*6][MAX_N*6]; 20 21 void read(int &x){ 22 char s; 23 x=0; 24 bool flag=0; 25 while(!isdigit(s=getchar())) 26 (s==‘-‘)&&(flag=true); 27 for(x=number;isdigit(s=getchar());x=x*10+number); 28 (flag)&&(x=-x); 29 } 30 31 void write(int x) 32 { 33 if(x<0) 34 { 35 putchar(‘-‘); 36 x=-x; 37 } 38 if(x>9) 39 write(x/10); 40 putchar(x%10+‘0‘); 41 } 42 43 int compress(int *x1, int *x2, int w); 44 45 int main() 46 { 47 read(W);read(H);read(N); 48 for (int i=0; i<N; i++) 49 { 50 read(X1[i]);read(Y1[i]); 51 read(X2[i]);read(Y2[i]); 52 } 53 W=compress(X1, X2, W); 54 H=compress(Y1, Y2, H); 55 memset(fld, 0, sizeof(fld)); 56 for (int i=0; i<N; i++) 57 for (int y=Y1[i]; y<=Y2[i]; y++) 58 for (int x=X1[i]; x<=X2[i]; x++) 59 fld[y][x]=true; 60 int ans=0; 61 for (int y=0; y<H; y++) 62 { 63 for (int x=0; x<W; x++) 64 { 65 if (fld[x][y]) continue; 66 ans++; 67 queue<pair<int, int>> que; 68 que.push(make_pair(x,y)); 69 while (!que.empty()) 70 { 71 int sx=que.front().first, sy=que.front().second; 72 que.pop(); 73 for (int i=0; i<4; i++) 74 { 75 int tx=sx+dx[i], ty=sy+dy[i]; 76 if (tx<0 || tx>=W || ty<0 || ty>=H) continue; 77 if (fld[tx][ty]) continue; 78 que.push(make_pair(tx,ty)); 79 fld[tx][ty]=true; 80 } 81 } 82 } 83 } 84 write(ans); 85 putchar(‘\n‘); 86 } 87 88 int compress(int *x1, int *x2, int w) 89 { 90 vector<int> xs; 91 for (int i=0; i<N; i++) 92 { 93 for (int d=-1; d<=1; d++) 94 { 95 int tx1=x1[i]+d, tx2=x2[i]+d; 96 if (1<=tx1 && tx1<=w) xs.push_back(tx1); 97 if (1<=tx2 && tx2<=w) xs.push_back(tx2); 98 } 99 } 100 sort(xs.begin(),xs.end()); 101 xs.erase(unique(xs.begin(),xs.end()),xs.end()); 102 for (int i=0; i<N; i++) 103 { 104 x1[i]=find(xs.begin(), xs.end(), x1[i])-xs.begin(); 105 x2[i]=find(xs.begin(), xs.end(), x2[i])-xs.begin(); 106 } 107 return xs.size(); 108 }
原文:https://www.cnblogs.com/Ymir-TaoMee/p/9496710.html