首页 > 编程语言 > 详细

HDU 2586 How far away? Tarjan算法 并查集 LCA

时间:2018-08-21 13:40:38      阅读:164      评论:0      收藏:0      [点我收藏+]

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 23506    Accepted Submission(s): 9329

Problem Description

There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can‘t visit a place twice) between every two houses. Yout task is to answer all these curious people.
 

 

Input

First line is a single integer T(T<=10), indicating the number of test cases.
  For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
  Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
 


Output

For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
 


Sample Input

2
3 2
1 2 10
3 1 15
1 2
2 3
 
 
2
2 100
1 2
2 1
 

Sample Output

10
25
100
100
 
 
本題大意:
  給出一棵樹,和樹邊長度,給出一系列詢問點,求兩點間的距離。
 
解題思路:
  本題可用Tarjan算法求出根節點到各點的最短距離,然後結合并查集來先求出最近公共祖先(LCA),這樣兩個點之間的距離就可以表示為:根節點到點1的距離 + 根節點到點2的距離 - 兩倍的根節點到LCA的距離。
  思想核心是求LCA,所以本文記錄一個用Tarjan結合并查集求LCA的方法。
  實現方法:選定一個點為根節點,對樹進行DFS搜索,搜索回溯時把子節點的并查集信息連到父節點上去。在搜索每個點的時候,都檢查是否是詢問點,如果是詢問點,則檢查與之對應的詢問點是否被訪問過,如果訪問過,那麼它的并查集父親必然到知道他們的公共祖先上去,為什麼?這是我參考其他大神代碼的時候思考一段時間才想出來為什麼的。根據DFS搜索的特性,搜索回溯時都把下級的并查集信息往上連,而DFS是深度優先,則回溯距離必然盡可能小,即如果回溯一級就找到另一條路的話,就會繼續往下搜,而如果這兩條路上各存著詢問點對的其中一個,先被搜索到的那個節點的并查集信息只往上并了一級,那就是最近的公共祖先。在處理尋問點對的時候,如果找到這樣的并查集被修改過的(即被訪問過的)的對應點,那就把它們兩個的LCA記下即可。
  把整棵樹遍歷完的時候,所有詢問點對的LCA也都求出來了,最後按照尋問順序,按照公式計算并輸出距離即可。
 
結合一下AC代碼理解:
#include<bits/stdc++.h>
using namespace std;
#define N 40000

typedef struct Edge
{
    int t,v;
    int next;
}edge;

edge E[N*2],e[N*2];
int cnt;
int head1[N],head2[N];//head1用于樹上節點的串連,head2用於詢問節點的串連
int dis[N],f[N],vis[N];//dis各點到根節點的距離,f為并查集
int ans[N][3];          //ans[0]和[1]記錄詢問點對,ans[3]記錄他們的公共祖先(LCA)
int n,m;
void addedge(int u,int v,int d,edge *a,int *head)
{
    a[cnt].t=v;
    a[cnt].v=d;
    a[cnt].next=head[u];
    head[u]=cnt++;

    a[cnt].t=u;
    a[cnt].v=d;
    a[cnt].next=head[v];
    head[v]=cnt++;
}

int findx(int a)//并查集
{
    if(a!=f[a])
        return f[a]=findx(f[a]);
    return a;
}

void getLCA(int p)//Tarjan算法求LCA
{
    vis[p]=1;
    f[p]=p;        //進入時初始化并查集

    for(int i=head2[p];i!=-1;i=e[i].next)//檢查詢問點對,是否發現已訪問
    {
        if(vis[e[i].t])
            ans[e[i].v][2]=findx(e[i].t);
    }

    for(int i=head1[p];i!=-1;i=E[i].next)//DFS搜索
    {
        if(!vis[E[i].t])
        {
            dis[E[i].t]=dis[p]+E[i].v;  //更新距離
            getLCA(E[i].t);
            f[E[i].t]=p;                //搜索過后更新子節點的并查集
        }
    }
}

int main()
{
    //freopen("a.txt","r",stdin);
    int T;
    scanf("%d",&T);
    while(T--)
    {
        cnt=0;
        memset(head1,-1,sizeof(head1));
        memset(head2,-1,sizeof(head2));
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n-1;i++)
        {
            int a,b,v;
            scanf("%d%d%d",&a,&b,&v);
            addedge(a,b,v,E,head1);
        }
        cnt=0;
        for(int i=1;i<=m;i++)       //先全部記錄后離線處理
        {

            scanf("%d%d",&ans[i][0],&ans[i][1]);
            addedge(ans[i][0],ans[i][1],i,e,head2);
        }

        memset(vis,0,sizeof(vis));
        dis[1]=0;
        getLCA(1);

        for(int i=1;i<=m;i++)
            printf("%d\n",dis[ans[i][1]]+dis[ans[i][0]]-2*dis[ans[i][2]]);
    }       //最短距離 = 節點1的距離 + 節點2的距離 - 2*LCA的最短距離
}           //(這裡最短距離是指導根節點的距離)

 

HDU 2586 How far away? Tarjan算法 并查集 LCA

原文:https://www.cnblogs.com/Lin88/p/9510766.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!