首页 > 其他 > 详细

【读书笔记】:MIT线性代数(3):Special Solution, Rank and RREF

时间:2018-08-21 20:48:55      阅读:308      评论:0      收藏:0      [点我收藏+]

Special Solutions:

技术分享图片

技术分享图片

Notice what is special about s 1 and S2. They have ones and zeros in the last two components. Those components are "free" and we choose them specially. Then the first components -2 and -3 are determined by the equation Ax = 0. The first component is pivot, so it is not free. Special solutions come from our special choices.

技术分享图片

A has rank=2, and the number of unknowns n=2, so the the number of free variables=n-r=0. Thus, no special solutions! What‘s more, A is invertible! B also doesn‘t have special solutions. But C has 2 special solutions.

技术分享图片

 技术分享图片

技术分享图片

技术分享图片

 

Rank:The numbers m and n give the size of a matrix-but not necessarily the true size of a linear system. An equation like 0 = 0 should not count, they can go up when elimination. The true size of A is given by its rank.

技术分享图片

技术分享图片

技术分享图片

RREF(Reduced Row Echelon Form):

技术分享图片

 

【读书笔记】:MIT线性代数(3):Special Solution, Rank and RREF

原文:https://www.cnblogs.com/rhyswang/p/9509251.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!