浮点数在内存中的存放格式如下:
地址 +0 +1 +2 +3 内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 这里 S 代表符号位,1是负,0是正 E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。 M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了 较高的有效位数,提高了精度。 零是一个特定值,幂是0 尾数也是0。 浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下: 地址 +0 +1 +2 +3 内容0xC1 0x48 0x00 0x00 浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转 换。 浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表 所列的那样分开,例如: 地址 +0 +1 +2 +3 格式 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 二进制 11000001 01001000 00000000 00000000 十六进制 C1 48 00 00 从这个例子可以得到下面的信息: 符号位是1 表示一个负数 幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。 尾数是后面的二进制数10010000000000000000000 在尾数的左边有一个省略的小数点和1,这个1在浮点数的保存中经常省略,加上一个1和小数 点到尾数的开头,得到尾数值如下: 1.10010000000000000000000 接着,根据指数调整尾数.一个负的指数向左移动小数点.一个正的指数向右移动小数点.因为 指数是3,尾数调整如下: 1100.10000000000000000000 结果是一个二进制浮点数,小数点左边的二进制数代表所处位置的2的幂,例如:1100表示 (1*2^3)+(1*2^2)+(0*2^1)+(0*2^0)=12。 小数点的右边也代表所处位置的2的幂,只是幂是负的。例如:.100...表示(1*2^(-1))+ (0*2^(-2))+(0*2^(-2))...=0.5。 这些值的和是12.5。因为设置的符号位表示这数是负的,因此十六进制值0xC1480000表示- 12.5。FPGA流水线形式的浮点单元如下所示:
第一步:检测是否在异常区域(指数为零),处在正常区则添加逻辑1到尾数的最高位(即把尾数的位变成24),否则添加零。按此原理那么数据越大小数位的精度也就越低。
第二步:两个数中较小的数必须进行调整,使得尾数的指数相等,因为大数的小数位占的少,因此要舍去小数的尾数,使得数据之间指数对齐,即归一化,向右移两个指数的差值即可。
第三步:符号检测并进行加减操作,然后在进行归一化处理。
可见浮点数的加减的硬件实现是很复杂的,那么要想实现硬件乘法器,就更加复杂了。
原文:http://blog.csdn.net/zhuzhiqi11/article/details/38084563