数据结构中有很多树的结构,其中包括二叉树、二叉搜索树、2-3树、红黑树等等。本文中对数据结构中常见的几种树的概念和用途进行了汇总,不求严格精准,但求简单易懂。
二叉树是数据结构中一种重要的数据结构,也是树表家族最为基础的结构。
二叉树的定义:二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2i-1个结点;深度为k的二叉树至多有2k-1个结点;对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
二叉树的示例:
满二叉树和完全二叉树:
满二叉树:除最后一层无任何子节点外,每一层上的所有结点都有两个子结点。也可以这样理解,除叶子结点外的所有结点均有两个子结点。节点数达到最大值,所有叶子结点必须在同一层上。
满二叉树的性质:
1) 一颗树深度为h,最大层数为k,深度与最大层数相同,k=h;
2) 叶子数为2h;
3) 第k层的结点数是:2k-1;
4) 总结点数是:2k-1,且总节点数一定是奇数。
完全二叉树:若设二叉树的深度为h,除第 h 层外,其它各层 (1~(h-1)层) 的结点数都达到最大个数,第h层所有的结点都连续集中在最左边,这就是完全二叉树。
注:完全二叉树是效率很高的数据结构,堆是一种完全二叉树或者近似完全二叉树,所以效率极高,像十分常用的排序算法、Dijkstra算法、Prim算法等都要用堆才能优化,二叉排序树的效率也要借助平衡性来提高,而平衡性基于完全二叉树。
二叉树的性质:
1) 在非空二叉树中,第i层的结点总数不超过2i-1, i>=1;
2) 深度为h的二叉树最多有2h-1个结点(h>=1),最少有h个结点;
二叉查找树的插入过程如下:
1) 若当前的二叉查找树为空,则插入的元素为根节点;
2) 若插入的元素值小于根节点值,则将元素插入到左子树中;
3) 若插入的元素值不小于根节点值,则将元素插入到右子树中。
二叉查找树的删除,分三种情况进行处理:
1) p为叶子节点,直接删除该节点,再修改其父节点的指针(注意分是根节点和不是根节点),如图a;
2) p为单支节点(即只有左子树或右子树)。让p的子树与p的父亲节点相连,删除p即可(注意分是根节点和不是根节点),如图b;
3) p的左子树和右子树均不空。找到p的后继y,因为y一定没有左子树,所以可以删除y,并让y的父亲节点成为y的右子树的父亲节点,并用y的值代替p的值;或者方法二是找到p的前驱x,x一定没有右子树,所以可以删除x,并让x的父亲节点成为y的左子树的父亲节点。如图c。
二叉树相关实现源码:
插入操作:
struct node
{
int val;
pnode lchild;
pnode rchild;
};
pnode BT = NULL;
//递归方法插入节点
pnode insert(pnode root, int x)
{
pnode p = (pnode)malloc(LEN);
p->val = x;
p->lchild = NULL;
p->rchild = NULL;
if(root == NULL){
root = p;
}
else if(x < root->val){
root->lchild = insert(root->lchild, x);
}
else{
root->rchild = insert(root->rchild, x);
}
return root;
}
//非递归方法插入节点
void insert_BST(pnode q, int x)
{
pnode p = (pnode)malloc(LEN);
p->val = x;
p->lchild = NULL;
p->rchild = NULL;
if(q == NULL){
BT = p;
return ;
}
while(q->lchild != p && q->rchild != p){
if(x < q->val){
if(q->lchild){
q = q->lchild;
}
else{
q->lchild = p;
}
}
else{
if(q->rchild){
q = q->rchild;
}
else{
q->rchild = p;
}
}
}
return;
}
删除操作:
bool delete_BST(pnode p, int x) //返回一个标志,表示是否找到被删元素
{
bool find = false;
pnode q;
p = BT;
while(p && !find){ //寻找被删元素
if(x == p->val){ //找到被删元素
find = true;
}
else if(x < p->val){ //沿左子树找
q = p;
p = p->lchild;
}
else{ //沿右子树找
q = p;
p = p->rchild;
}
}
if(p == NULL){ //没找到
cout << "没有找到" << x << endl;
}
if(p->lchild == NULL && p->rchild == NULL){ //p为叶子节点
if(p == BT){ //p为根节点
BT = NULL;
}
else if(q->lchild == p){
q->lchild = NULL;
}
else{
q->rchild = NULL;
}
free(p); //释放节点p
}
else if(p->lchild == NULL || p->rchild == NULL){ //p为单支子树
if(p == BT){ //p为根节点
if(p->lchild == NULL){
BT = p->rchild;
}
else{
BT = p->lchild;
}
}
else{
if(q->lchild == p && p->lchild){ //p是q的左子树且p有左子树
q->lchild = p->lchild; //将p的左子树链接到q的左指针上
}
else if(q->lchild == p && p->rchild){
q->lchild = p->rchild;
}
else if(q->rchild == p && p->lchild){
q->rchild = p->lchild;
}
else{
q->rchild = p->rchild;
}
}
free(p);
}
else{ //p的左右子树均不为空
pnode t = p;
pnode s = p->lchild; //从p的左子节点开始
while(s->rchild){ //找到p的前驱,即p左子树中值最大的节点
t = s;
s = s->rchild;
}
p->val = s->val; //把节点s的值赋给p
if(t == p){
p->lchild = s->lchild;
}
else{
t->rchild = s->lchild;
}
free(s);
}
return find;
}
查找操作:
pnode search_BST(pnode p, int x)
{
bool solve = false;
while(p && !solve){
if(x == p->val){
solve = true;
}
else if(x < p->val){
p = p->lchild;
}
else{
p = p->rchild;
}
}
if(p == NULL){
cout << "没有找到" << x << endl;
}
return p;
}
我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定。但是,在某些极端的情况下(如在插入的序列是有序的时),二叉搜索树将退化成近似链或链,此时,其操作的时间复杂度将退化成线性的,即O(n)。我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉。这同时也会造成树的平衡性受到破坏,提高它的操作的时间复杂度。于是就有了我们下边介绍的平衡二叉树。
平衡二叉树定义:平衡二叉树(Balanced Binary Tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用算法有红黑树、AVL树等。在平衡二叉搜索树中,我们可以看到,其高度一般都良好地维持在O(log2n),大大降低了操作的时间复杂度。
最小二叉平衡树的节点的公式如下:
F(n)=F(n-1)+F(n-2)+1
这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
有关AVL树的具体实现,可以参考C小加的博客《一步一步写平衡二叉树(AVL)》。
AVL树定义:AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它。在AVL中任何节点的两个儿子子树的高度最大差别为1,所以它也被称为高度平衡树,n个结点的AVL树最大深度约1.44log2n。查找、插入和删除在平均和最坏情况下都是O(logn)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(logN)。但是频繁旋转会使插入和删除牺牲掉O(logN)左右的时间,不过相对二叉查找树来说,时间上稳定了很多。
AVL树的自平衡操作——旋转:
AVL树最关键的也是最难的一步操作就是旋转。旋转主要是为了实现AVL树在实施了插入和删除操作以后,树重新回到平衡的方法。下面我们重点研究一下AVL树的旋转。
对于一个平衡的节点,由于任意节点最多有两个儿子,因此高度不平衡时,此节点的两颗子树的高度差2.容易看出,这种不平衡出现在下面四种情况:
1) 6节点的左子树3节点高度比右子树7节点大2,左子树3节点的左子树1节点高度大于右子树4节点,这种情况成为左左。
2) 6节点的左子树2节点高度比右子树7节点大2,左子树2节点的左子树1节点高度小于右子树4节点,这种情况成为左右。
3) 2节点的左子树1节点高度比右子树5节点小2,右子树5节点的左子树3节点高度大于右子树6节点,这种情况成为右左。
4) 2节点的左子树1节点高度比右子树4节点小2,右子树4节点的左子树3节点高度小于右子树6节点,这种情况成为右右。
从图2中可以可以看出,1和4两种情况是对称的,这两种情况的旋转算法是一致的,只需要经过一次旋转就可以达到目标,我们称之为单旋转。2和3两种情况也是对称的,这两种情况的旋转算法也是一致的,需要进行两次旋转,我们称之为双旋转。
单旋转
单旋转是针对于左左和右右这两种情况的解决方案,这两种情况是对称的,只要解决了左左这种情况,右右就很好办了。图3是左左情况的解决方案,节点k2不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的左子树X子树,所以属于左左情况。
为使树恢复平衡,我们把k2变成这棵树的根节点,因为k2大于k1,把k2置于k1的右子树上,而原本在k1右子树的Y大于k1,小于k2,就把Y置于k2的左子树上,这样既满足了二叉查找树的性质,又满足了平衡二叉树的性质。
这样的操作只需要一部分指针改变,结果我们得到另外一颗二叉查找树,它是一棵AVL树,因为X向上一移动了一层,Y还停留在原来的层面上,Z向下移动了一层。整棵树的新高度和之前没有在左子树上插入的高度相同,插入操作使得X高度长高了。因此,由于这颗子树高度没有变化,所以通往根节点的路径就不需要继续旋转了。
双旋转
对于左右和右左这两种情况,单旋转不能使它达到一个平衡状态,要经过两次旋转。双旋转是针对于这两种情况的解决方案,同样的,这样两种情况也是对称的,只要解决了左右这种情况,右左就很好办了。图4是左右情况的解决方案,节点k3不满足平衡特性,因为它的左子树k1比右子树Z深2层,而且k1子树中,更深的一层的是k1的右子树k2子树,所以属于左右情况。
为使树恢复平衡,我们需要进行两步,第一步,把k1作为根,进行一次右右旋转,旋转之后就变成了左左情况,所以第二步再进行一次左左旋转,最后得到了一棵以k2为根的平衡二叉树。
AVL树实现源码:
//AVL树节点信息
template<class T>
class TreeNode
{
public:
TreeNode():lson(NULL),rson(NULL),freq(1),hgt(0){}
T data;//值
int hgt;//高度
unsigned int freq;//频率
TreeNode* lson;//指向左儿子的地址
TreeNode* rson;//指向右儿子的地址
};
//AVL树类的属性和方法声明
template<class T>
class AVLTree
{
private:
TreeNode<T>* root;//根节点
void insertpri(TreeNode<T>* &node,T x);//插入
TreeNode<T>* findpri(TreeNode<T>* node,T x);//查找
void insubtree(TreeNode<T>* node);//中序遍历
void Deletepri(TreeNode<T>* &node,T x);//删除
int height(TreeNode<T>* node);//求树的高度
void SingRotateLeft(TreeNode<T>* &k2);//左左情况下的旋转
void SingRotateRight(TreeNode<T>* &k2);//右右情况下的旋转
void DoubleRotateLR(TreeNode<T>* &k3);//左右情况下的旋转
void DoubleRotateRL(TreeNode<T>* &k3);//右左情况下的旋转
int Max(int cmpa,int cmpb);//求最大值
public:
AVLTree():root(NULL){}
void insert(T x);//插入接口
TreeNode<T>* find(T x);//查找接口
void Delete(T x);//删除接口
void traversal();//遍历接口
};
//计算节点的高度
template<class T>
int AVLTree<T>::height(TreeNode<T>* node)
{
if(node!=NULL)
return node->hgt;
return -1;
}
//求最大值
template<class T>
int AVLTree<T>::Max(int cmpa,int cmpb)
{
return cmpa>cmpb?cmpa:cmpb;
}
//左左情况下的旋转
template<class T>
void AVLTree<T>::SingRotateLeft(TreeNode<T>* &k2)
{
TreeNode<T>* k1;
k1=k2->lson;
k2->lson=k1->rson;
k1->rson=k2;
k2->hgt=Max(height(k2->lson),height(k2->rson))+1;
k1->hgt=Max(height(k1->lson),k2->hgt)+1;
}
//右右情况下的旋转
template<class T>
void AVLTree<T>::SingRotateRight(TreeNode<T>* &k2)
{
TreeNode<T>* k1;
k1=k2->rson;
k2->rson=k1->lson;
k1->lson=k2;
k2->hgt=Max(height(k2->lson),height(k2->rson))+1;
k1->hgt=Max(height(k1->rson),k2->hgt)+1;
}
//左右情况的旋转
template<class T>
void AVLTree<T>::DoubleRotateLR(TreeNode<T>* &k3)
{
SingRotateRight(k3->lson);
SingRotateLeft(k3);
}
//右左情况的旋转
template<class T>
void AVLTree<T>::DoubleRotateRL(TreeNode<T>* &k3)
{
SingRotateLeft(k3->rson);
SingRotateRight(k3);
}
//插入
template<class T>
void AVLTree<T>::insertpri(TreeNode<T>* &node,T x)
{
if(node==NULL)//如果节点为空,就在此节点处加入x信息
{
node=new TreeNode<T>();
node->data=x;
return;
}
if(node->data>x)//如果x小于节点的值,就继续在节点的左子树中插入x
{
insertpri(node->lson,x);
if(2==height(node->lson)-height(node->rson))
if(x<node->lson->data)
SingRotateLeft(node);
else
DoubleRotateLR(node);
}
else if(node->data<x)//如果x大于节点的值,就继续在节点的右子树中插入x
{
insertpri(node->rson,x);
if(2==height(node->rson)-height(node->lson))//如果高度之差为2的话就失去了平衡,需要旋转
if(x>node->rson->data)
SingRotateRight(node);
else
DoubleRotateRL(node);
}
else ++(node->freq);//如果相等,就把频率加1
node->hgt=Max(height(node->lson),height(node->rson));
}
//插入接口
template<class T>
void AVLTree<T>::insert(T x)
{
insertpri(root,x);
}
//查找
template<class T>
TreeNode<T>* AVLTree<T>::findpri(TreeNode<T>* node,T x)
{
if(node==NULL)//如果节点为空说明没找到,返回NULL
{
return NULL;
}
if(node->data>x)//如果x小于节点的值,就继续在节点的左子树中查找x
{
return findpri(node->lson,x);
}
else if(node->data<x)//如果x大于节点的值,就继续在节点的左子树中查找x
{
return findpri(node->rson,x);
}
else return node;//如果相等,就找到了此节点
}
//查找接口
template<class T>
TreeNode<T>* AVLTree<T>::find(T x)
{
return findpri(root,x);
}
//删除
template<class T>
void AVLTree<T>::Deletepri(TreeNode<T>* &node,T x)
{
if(node==NULL) return ;//没有找到值是x的节点
if(x < node->data)
{
Deletepri(node->lson,x);//如果x小于节点的值,就继续在节点的左子树中删除x
if(2==height(node->rson)-height(node->lson))
if(node->rson->lson!=NULL&&(height(node->rson->lson)>height(node->rson->rson)) )
DoubleRotateRL(node);
else
SingRotateRight(node);
}
else if(x > node->data)
{
Deletepri(node->rson,x);//如果x大于节点的值,就继续在节点的右子树中删除x