首页 > 其他 > 详细

【读书笔记】:MIT线性代数(4):Independence, Basis and Dimension

时间:2018-08-24 10:13:08      阅读:247      评论:0      收藏:0      [点我收藏+]

Independence:

The columns of A are independent when the nullspace N (A) contains only the zero vector.

技术分享图片

Example1:

1. If three vectors are not in the same plane, they are independent. No combination of V1, V2, V3 in Figure 3.4 gives zero except 0V1 + 0V2 + 0V3.
2. If three vectors W1, W2, W3 are in the same plane, they are dependent.

技术分享图片

技术分享图片

Example2:

技术分享图片

技术分享图片

技术分享图片

 Vectors that Span a Subspace:

技术分享图片

 

A basis of a vector space:

技术分享图片

Every vector v in the space is a combination of the basis vectors, because they span the space.There is one and only one way to write v as a combination of the basis vectors.

 

Dimension:

技术分享图片

The dimension of C(A) is the rank of matrix A. The dimension of N(A) is the number of free variables(n-r)!

 

【读书笔记】:MIT线性代数(4):Independence, Basis and Dimension

原文:https://www.cnblogs.com/rhyswang/p/9527717.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!