1、如何理解 tf.reduce_max或者 tf.reduce_mean中对Tensor和高维矩阵的坐标轴axis的选择的操作
tf.reduce_mean(
input_tensor,
axis=None,
keepdims=None,
name=None,
reduction_indices=None,
keep_dims=None
)
x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x) # 1.5
tf.reduce_mean(x, 0) # [1.5, 1.5]
tf.reduce_mean(x, 1) # [1., 2.]
从上计算结果中也可以看到,如果axis为None,默认将所有的维度都降1,最后剩下个0维的数子。
一个不是很简单,但是很好理解的方法是:你的输入矩阵的shape是(2,3,4),那么当axis=0时,就是在第一个dimension上进行求均值,最后得到的结果的shape就是去掉第一个dimension后的shape,也就是(3,4)。所以,我们例子中的x是shape为(2,2),axis=0时,剩下第二个维度--列,所以沿着第一个维度方向上--行对所有列求均值。
原文:https://www.cnblogs.com/zongfa/p/9531540.html