系列索引:
- NOIp 数据结构专题总结 (1): https://www.cnblogs.com/greyqz/p/9472917.html
- NOIp 数据结构专题总结 (2): https://www.cnblogs.com/greyqz/p/9541371.html
a.k.a. Fenwick Tree.
WARNING: subscripts must begin with \(1, 2, \cdots, n\).
int lowbit(int x) { return x & (-x); }
void update(int x, int y) {
for (; x <= N; x += lowbit(x)) t[x] += y;
}
int sum(int x) { // prefix
int ret = 0;
for (; x; x -= lowbit(x)) ret += t[x];
return ret;
}
// query sum of [l, r]
int query(int l, int r) {
return sum(r) - sum(l-1);
}
void update(int x, int y, int z) {
int i = x;
while (i <= n) {
int j = y;
while (j <= m) {
t[i][j] += z;
j += lowbit(j);
}
i += lowbit(i);
}
}
int sum(int x, int y) { // prefix
int ret = 0, i = x;
while (i > 0) {
int j = y;
while (j > 0) {
ret += t[i][j];
j -= lowbit[j];
}
i -= lowbit[i];
}
return ret;
}
int t[N << 2];
void change(int k, int l, int r, int x, int v) {
if (r < x || l > x) return;
if (l == r && l == x) {
t[x] = v; // also: t[x] += v;
return;
}
int mid = (l + r) >> 1;
change(k<<1, l, mid, x, v);
change((k<<1)+1, mid+1, r, x, v);
t[k] = t[k<<1] + t[(k<<1)+1]; // update value (*)
}
int query(int k, int l, int r, int x, int y) {
if (y < l || x > r) return 0;
if (l >= x && r <= y) return t[k];
int mid = (l + r) >> 1, ret;
ret = query(k<<1, l, mid, x, y);
ret += query((k<<1)+1, mid+1, r, x, y); // (*)
return ret;
}
change(1, 1, n, x, val);
query(1, 1, n, l, r);
*
: changeable. e.g. sum
, max
, min
.
void modify(int k, int l, int r, int x, int y, int v) {
if (r < x || l > y) return;
if (l >= x && r <= y) {
lazy[k] += v; // lazy tag
return;
}
int mid = (l + r) >> 1;
modify(k<<1, l, mid, x, y, v);
modify((k<<1)+1, mid+1, r, x, y, v);
}
int query(int k, int l, int r, int x) { // query single point x
if (l == r) return lazy[k];
int mid = (l + r) >> 1;
if (x <= mid) return query(k<<1, l, mid, x) + lazy[k];
else return query((k<<1)+1, mid+1, r, x) + lazy[k];
}
void add(int k, int l, int r, int v) {
lazy[k] += v;
sum[k] += (r-l+1) * v;
}
void pushdown(int k, int l, int r, int mid) {
if (!lazy[k]) return;
add(k<<1, l, mid, lazy[k]);
add((k<<1)+1, mid+1, r, lazy[k]);
lazy[k] = 0;
}
void modify(int k, int l, int r, int x, int y, int v) {
if (l >= x && r <= y) {
add(k, l, r, v);
return;
}
int mid = (l + r) >> 1;
pushdown(k, l, r, mid);
if (x <= mid) modify(k<<1, l, mid, x, y, v);
if (mid < y) modify((k<<1)+1, mid+1, r, x, y, v);
sum[k] = sum[k<<1] + sum[(k<<1)+1];
}
int query(int k, int l, int r, int x, int y) {
if (l >= x && r <= y) return sum[k];
int mid = (l + r) >> 1, ret = 0;
pushdown(k, l, r, mid);
if (x <= mid) ret += query(k<<1, l, mid, x, y);
if (mid < y) ret += query((k<<1)+1, mid+1, r, x, y);
return ret;
}
同时支持区间乘和区间加:将标记设计为先乘 a 再加 b,那么区间加时直接加 b 即可,而区间乘时需要将 a 和 b 都乘上一个数。
/* Segment Tree: 同时支持区间乘和区间加
* Au: GG (Luogu P3373)
*/
#include <cstdio>
#define ll long long
const int N = 100002;
int n, m, MOD, data[N], lazy[N<<2], sum[N<<2], lazy2[N<<2];
void build(int k, int l, int r) {
lazy2[k] = 1;
if (l==r) { sum[k] = data[l]; return; }
int mid = l+r >> 1;
build(k<<1, l, mid);
build((k<<1)+1, mid+1, r);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
void add(int k, int l, int r, int v) {
lazy[k] = ((ll)lazy[k] + v) % MOD;
sum[k] = (sum[k] + (ll)(r-l+1) * v) % MOD;
}
void mul(int k, int l, int r, int v) {
lazy[k] = ((ll)lazy[k] * v) % MOD;
lazy2[k] = ((ll)lazy2[k] * v) % MOD;
sum[k] = ((ll)sum[k] * v) % MOD;
}
void pushdown(int k, int l, int r, int mid) {
if (lazy2[k]!=1) {
mul(k<<1, l, mid, lazy2[k]);
mul((k<<1)+1, mid+1, r, lazy2[k]);
lazy2[k] = 1;
}
if (lazy[k]) {
add(k<<1, l, mid, lazy[k]);
add((k<<1)+1, mid+1, r, lazy[k]);
lazy[k] = 0;
}
}
void modify(int k, int l, int r, int x, int y, int v) {
if (l>=x && r<=y) {add(k, l, r, v); return;}
int mid = l+r >> 1;
pushdown(k, l, r, mid);
if (x<=mid) modify(k<<1, l, mid, x, y, v);
if (y>mid) modify((k<<1)+1, mid+1, r, x, y, v);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
void modify2(int k, int l, int r, int x, int y, int v) {
if (l>=x && r<=y) {mul(k, l, r, v); return;}
int mid = l+r >> 1;
pushdown(k, l, r, mid);
if (x<=mid) modify2(k<<1, l, mid, x, y, v);
if (y>mid) modify2((k<<1)+1, mid+1, r, x, y, v);
sum[k] = ((ll)sum[k<<1] + sum[(k<<1)+1]) % MOD;
}
int query(int k, int l, int r, int x, int y) {
if (l>=x && r<=y) return sum[k];
int mid = l+r >> 1, res = 0;
pushdown(k, l, r, mid);
if (x<=mid) res = ((ll)res + query(k<<1, l, mid, x, y)) % MOD;
if (y>mid) res = ((ll)res + query((k<<1)+1, mid+1, r, x, y)) % MOD;
return res;
}
int main() {
scanf("%d%d%d", &n, &m, &MOD);
for (int i=1; i<=n; i++)
scanf("%d", &data[i]);
build(1, 1, n);
int opt, a, b, c;
while (m--) {
scanf("%d%d%d", &opt, &a, &b);
if (opt>2) printf("%d\n", query(1, 1, n, a, b));
else {
scanf("%d", &c);
if (opt<2) modify2(1, 1, n, a, b, c);
else modify(1, 1, n, a, b, c);
}
}
return 0;
}
原文:https://www.cnblogs.com/greyqz/p/9541371.html