首页 > 其他 > 详细

Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning

时间:2018-08-27 17:25:40      阅读:309      评论:0      收藏:0      [点我收藏+]

Link of the Paper: https://arxiv.org/abs/1805.09019

Innovations:

  • The authors propose a CNN + CNN framework for image captioning. There are four modules in the framework: vision module ( VGG-16 ), which is adopted to "watch" images; language module, which is to model sentences; attention module, which connects the vision module with the language module; prediction module, which takes the visual features from the attention module and concepts from the language module as input and predicts the next word.

技术分享图片    技术分享图片    技术分享图片

General Points:

  • RNNs or LSTMs cannot be calculated in parallel and ignore the underlying hierarchical structure of a sentence.
  • Directly feeding the output of the CNN into the RNN treats objects in an image the same and ignores the salient objects when generating one word.
  • In both m-RNN and NIC, an image is represented by a single vector, which ignores different areas and objects in the image. A spatial attention mechanism is introduced into image captioning model in Show, attend and tell: Neural image caption generation with visual attention, which allows the model to pay attention to different areas at each time step.

Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning

原文:https://www.cnblogs.com/zlian2016/p/9542632.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!