Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 19941 | Accepted: 6999 |
Description
Input
Output
Sample Input
2 3 3 1 2 1 2 3 2 3 1 3 4 4 1 2 2 2 3 2 3 4 2 4 1 2
Sample Output
3 Not Unique!
这道题就是要你判断是否为唯一的最小生成树。。这也是我第一道次小生成树的题。。那个PDF资料真是太好了。。我用的是Kruskal。。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<vector> #include<queue> #include<cmath> using namespace std; const int max1 = 105; const int max2 = 10005; struct node { int u, v, w;//边的顶点以及权值 int r;//用于记录边的序号 int used;//用于记录边是否被使用过 }edge[max2];//边的数组 int parent[max1];//顶点i所在集合对应树中的根节点 int n, m;//顶点数,边的个数 int cas; void start()//初始化 { for(int i=1; i<=n; i++) parent[i] = i; } int find (int x)//查找并返回节点x所属集合的根节点 { return parent[x] == x ? x : parent[x] = find ( parent[x] ); } bool cmp ( node a, node b )//按权值从小到大排序 { return a.w < b.w; } int Kruskal()//第一次求最小生成树 { sort( edge+1, edge+m+1, cmp ); int ans = 0; for(int i=1; i<=m; i++) { int e = edge[i].r; int x = find( edge[i].u ); int y = find( edge[i].v ); if( x!=y ) { parent[y] = x; ans += edge[i].w; edge[e].used = 1; } } return ans; } int Kruskal_again(int tt)//求次小生成树 { sort( edge+1, edge+m+1, cmp ); int ans = 0; for(int i=1; i<=m; i++) { if( tt==edge[i].r ) continue; int x = find( edge[i].u ); int y = find( edge[i].v ); if( x!=y ) { parent[y] = x; ans += edge[i].w; } } return ans; } bool judge()//判断能否就得最小生成树,即看是否有孤立的点 { for(int i=1; i<=n; i++) if( find(i) != find(1) ) return false; return true; } int main() { scanf("%d", &cas); while( cas-- ) { scanf("%d%d", &n, &m); start(); for(int i=1; i<=m; i++) { scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w); edge[i].used = 0; edge[i].r = i; } int flag = 0; int ans1 = Kruskal(); for(int i=1; i<=m; i++)//一一枚举求最小生成树。。 { if( !edge[i].used ) continue; start(); int ans2 = Kruskal_again(i);//求除去此边的最小生成树 if( ans1 == ans2 && judge() ) { flag = 1;//标记结论 break; } } if( flag ) printf("Not Unique!\n"); else printf("%d\n", ans1); } return 0; }
POJ 1679:The Unique MST(次小生成树&&Kruskal),布布扣,bubuko.com
POJ 1679:The Unique MST(次小生成树&&Kruskal)
原文:http://blog.csdn.net/u013487051/article/details/38086767