转载:http://zhuanlan.51cto.com/art/201808/582078.htm
1.哈希(hash)比树(tree)更快,索引结构为什么要设计成树型?
2.数据库索引为什么使用B+树?
1.
加速查找速度的数据结构,常见的有两类:
可以看到,不管是读请求,还是写请求,哈希类型的索引,都要比树型的索引更快一些,那为什么,索引结构要设计成树型呢?
索引设计成树形,和SQL的需求相关。
对于这样一个单行查询的SQL需求:
确实是哈希索引更快,因为每次都只查询一条记录。
画外音:所以,如果业务需求都是单行访问,例如passport,确实可以使用哈希索引。
但是对于排序查询的SQL需求:
哈希型的索引,时间复杂度会退化为O(n),而树型的“有序”特性,依然能够保持O(log(n)) 的高效率。
任何脱离需求的设计都是耍流氓。
多说一句,InnoDB并不支持哈希索引。
2.
为了保持知识体系的完整性,简单介绍下几种树。
1. 第一种:二叉搜索树
二叉搜索树,如上图,是最为大家所熟知的一种数据结构,就不展开介绍了,它为什么不适合用作数据库索引?
画外音:这个树经常出现在大学课本里,所以最为大家所熟知。
2. 第二种:B树
B树,如上图,它的特点是:
画外音,实在不想介绍这个特性:非根节点包含的关键字个数j满足,(┌m/2┐)-1 <= j <= m-1,节点分裂时要满足这个条件。
B树被作为实现索引的数据结构被创造出来,是因为它能够完美的利用“局部性原理”。
(1) 什么是局部性原理?
局部性原理的逻辑是这样的:
(2) B树为何适合做索引?
第三种:B+树
B+树,如上图,仍是m叉搜索树,在B树的基础上,做了一些改进:
这些改进让B+树比B树有更优的特性:
最后,量化说下,为什么m叉的B+树比二叉搜索树的高度大大大大降低?
大概计算一下:
(1)局部性原理,将一个节点的大小设为一页,一页4K,假设一个KEY有8字节,一个节点可以存储500个KEY,即j=500
(2)m叉树,大概m/2<= j <=m,即可以差不多是1000叉树
那么:
画外音:额,帮忙看下有没有算错。
可以看到,存储大量的数据(5亿),并不需要太高树的深度(高度3),索引也不是太占内存(4G)。
总结
(1)数据库索引用于加速查询
(2)虽然哈希索引是O(1),树索引是O(log(n)),但SQL有很多“有序”需求,故数据库使用树型索引
(3)InnoDB不支持哈希索引
(4)数据预读的思路是:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,以便未来减少磁盘IO
(5)局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO
(6)数据库的索引最常用B+树:
原文:https://www.cnblogs.com/fanguangdexiaoyuer/p/9545468.html