在讲解function的概念之前,我们要先回顾下op。op是规定了输入和输出的操作声明,在研究node的时候我们也看到,NodeDef是包含OpDef的,那么是不是op就只能是节点级别的操作呢?并非如此,操作是可以嵌套的,也就是说,操作A可能内部包含了操作BCD。从这个角度理解function就容易了,function其实就是一些大的op。函数的本质是给定输入,经过计算给出输出,这与op的定位相同。对于一些大op,我们可以定义函数与之对应,这些函数内部会包含OpDef,表示这个函数的签名(输入、输出),也会包含一系列NodeDef,用于表示函数内部的运行机制。
有了上面的理解,我们先来看一下FunctionDef的结构:
message FunctionDef {
OpDef signature = 1;
map<string, AttrValue> attr = 5;//函数中的内部参数
repeated NodeDef node_def = 3;
map<string, string> ret = 4;//一个从signature中输出参数名称,到node_def的输出的映射
}
message GradientDef {
string function_name = 1;//原函数名称
string gradient_func = 2;//梯度函数名称
}
message FunctionDefLibrary {
repeated FunctionDef function = 1;
repeated GradientDef gradient = 2;
}
有以下几点需要说明:
为了方便对FunctionDef的定义,设计了FunctionDefHelper类,利用它可以方便的定义函数,如下:
FunctionDef my_func = FunctionDefHelper::Create(
"my_func_name",
{"x:T", "y:T"},//每个输入参数用一个字符串表示
{“z:T"},//每个输出用一个字符串表示
{"T: {float, double}"},//每个参数一条字符串
{
{{"o"},"Mul",{"x","y"},{{"T","$T"}}}
},//每个节点对应一个元素
{{"z", "o:z"}}//函数输出到节点输出的映射
);
这个类的实现比较简单,这里我们就不再赘述了。
在TF图中,如果要调用一个function,仅知道函数定义是不够的,我们还要为向函数中传递数据,以及从函数中返回数据,提供结构和功能上的支持。还记得OpKernel类的Compute函数吗?每个kernel的计算函数都使用了同样一个接口,依靠同一个接口实现了不同的运算,秘密就在于函数的输入参数OpKernelContext,它相当于Compute函数调用的上下文,让同样的接口,可以为完全不同的运算提供支持。这也就是FunctionCallFrame存在的意义,它本质上是一个数据中转站,把函数输入数据填入这个结构,在函数计算结束后再把输出数据填入,让函数调用者获取需要的数据。从某种意义上讲,它很像函数调用所在的栈帧,这也就是FunctionCallFrame这个名字的由来:
class FunctionCallFrame {
//...
private:
DataTypeVector arg_types_;
DataTypeVector ret_types_;
gtl::InlinedVector<Tensor, 4> args_;
struct Retval {
bool has_val = false;
Tensor val;
};
gtl::InlinedVector<Retval, 4> rets_;
}
可以看出,这个类的私有数据成员只有输入输出类型、输入输出数值这样四类,本质上就是函数调用的一个中转站。
刚才我们在看函数相关proto的时候看到一个结构,FunctionDefLibrary,这两个类要区分清楚。Definition类本质上是一个注册器,提供了函数注册、查找等功能,而Library本质上是一个函数定义的集合,不具备查找功能。下面我们来看一下,类的结构:
class FunctionLibraryDefinition : public OpRegistryInterface {
private:
struct FunctionDefAndOpRegistration {
FunctionDefAndOpRegistration(const FunctionDef& fdef_in);
FunctionDef fdef;
OpRegistrationData op_registration_data;
};
const OpRegistryInterface* const default_registry_;
gtl::FlatMap<string, std::unique_ptr<FunctionDefAndOpRegistration>> function_defs_;
gtl::FlatMap<string, string> func_grad_;
};
这个类给我们提供了一个方便对function进行集中管理的地方。
顾名思义,是函数库的运行时类。为函数的执行提供了很多便利的接口。它单纯是包裹在FunctionLibraryDefinition这个类之上的,提供API支持,本身是没有任何数据成员的。我们简单看下它都提供了哪些API:
class FunctionLibraryRuntime {
public:
//...
virtual Status Instantiate(const string& function_name, AttrSlice attrs, Handle* handle) = 0;//用参数实例化一个函数
virtual const FunctionBody* GetFunctionBody(Handle h) = 0;//获取一个已经实例化了的函数的函数体
virtual void Run(const Option& opts, Handle handle, gtl::ArraySlice<Tensor> args, std::vector<Tensor>* rets, DoneCallback done) = 0;//异步的调用一个使用handle标识的函数
virtual Status CreateKernel(const NodeDef& ndef, OpKernel** kernel) = 0;//给定ndef,创造一个kernel
virtual bool IsStateful(const string& function_name) = 0;//该函数是否是带有状态的
virtual Device* device() = 0;//函数运行所在的设备
virtual const FunctionLibraryDefinition* GetFunctionLibraryDefinition() const = 0;
virtual Env* env() = 0;
};
tensorflow源码解析之framework-function
原文:https://www.cnblogs.com/jicanghai/p/9551776.html