groucho_grammer = nltk.CFG.fromstring("""
s -> NP VP
VP -> V NP | V NP PP
PP -> P NP
V -> "saw" | "ate" | "walked"
NP -> "John" | "Mary" | "Bob" | Det N | Det N PP
Det -> "a" | "an" | "the" | "my"
N -> "man" | "dog" | "cat" | "telescope" | "park"
P -> "in" | "on" | "by" | "with"
""")
sent = [‘Mary‘,‘saw‘ ,‘Bob‘]
parser = nltk.RecursiveDescentParser(groucho_grammer)
trees = parser.parse(sent)
for tree in trees:
print(tree) #(s (NP Mary) (VP (V saw) (NP Bob)))
grammar1 = nltk.data.load(‘file:mygrammar.cfg‘)
sent = ‘Mary saw Bob‘.split()
rd_parser = nltk.RecursiveDescentParser(grammer1,trace=2)
for tree in rd_parser.parse(sent):
print(tree)#(s (NP Mary) (VP (V saw) (NP Bob)))
for p in grammer1.productions():
print(p)
#递归下降解析器[自顶向下]
rd_parser = nltk.RecursiveDescentParser(grammar1)
sent = ‘Mary saw a dog‘.split()
for t in rd_parser.parse_all(sent):
print(t)#(s (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
#移进-归约分析[自底向上]
sr_parse = nltk.ShiftReduceParser(grammar1)
sent = ‘Mary saw a dog‘.split()
for t in sr_parse.parse(sent):
print(t)#(s (NP Mary) (VP (V saw) (NP (Det a) (N dog))))
#左角落解析器
#带自下而上过滤的自上而下的解析器,它不会陷入左递归产生式的陷阱
# 分析器每次考虑产生式时,它会检查下一个输入词是否与左角落表格中至少一种非终结符的类别相容。
#符合语句规则的子串表
# 采用动态规划存储中间结果,并在适当的时候重用它们,能显著提高效率。——图表分析
def init_wfst(tokens, grammar):
numtokens = len(tokens)
wfst = [[None for i in range(numtokens+1)] for j in range(numtokens+1)]
for i in range(numtokens):
productions = grammar.productions(rhs=tokens[i])
wfst[i][i+1] = productions[0].lhs()
return wfst
def complete_wfst(wfst, tokens, grammar, trace=False):
index = dict((p.rhs(), p.lhs()) for p in grammar.productions())
numtokens = len(tokens)
for span in range(2, numtokens + 1):
for start in range(numtokens + 1):
end = start + span
if end > numtokens: break
for mid in range(start+1, end):
nt1, nt2 = wfst[start][mid], wfst[mid][end]
if nt1 and nt2 and (nt1, nt2) in index:
wfst[start][end] = index[(nt1, nt2)]
if trace:
print("[%s] %3s [%s] %3s [%s] ==> [%s] %3s [%s]"
%(start, nt1, mid, nt2, end, start, index[(nt1, nt2)], end))
return wfst
def display(wfst, tokens):
print(‘\nWFST ‘ + ‘ ‘.join([("%-4d" % i) for i in range(1, len(wfst))]))
for i in range(len(wfst)-1):
print("%d " %i, end="")
for j in range(1, len(wfst)):
print("%-4s" % (wfst[i][j] or ‘.‘), end="")
print("")
tokens = "I shot an elephant in my pajamas".split()
wfst0 = init_wfst(tokens, grammar1)
display(wfst0, tokens)
WFST 1 2 3 4 5 6 7
0 NP . . . . . .
1 . V . . . . .
2 . . Det . . . .
3 . . . N . . .
4 . . . . P . .
5 . . . . . Det .
6 . . . . . . N
wfst1 = complete_wfst(wfst0,tokens,grammar1,trace=True)
display(wfst1,tokens)
[2] Det [3] N [4] ==> [2] NP [4]
[5] Det [6] N [7] ==> [5] NP [7]
[1] V [2] NP [4] ==> [1] VP [4]
[4] P [5] NP [7] ==> [4] PP [7]
[0] NP [1] VP [4] ==> [0] S [4]
[1] VP [4] PP [7] ==> [1] VP [7]
[0] NP [1] VP [7] ==> [0] S [7]
WFST 1 2 3 4 5 6 7
0 NP . . S . . S
1 . V . VP . . VP
2 . . Det NP . . .
3 . . . N . . .
4 . . . . P . PP
5 . . . . . Det NP
6 . . . . . . N
groucho_dep_grammer = nltk.grammar.DependencyGrammar.fromstring("""
‘shot‘ -> ‘I‘ | ‘elephant‘ | ‘in‘
‘elephant‘ -> ‘an‘ | ‘in‘
‘in‘ -> ‘pajamas‘
‘pajamas‘ -> ‘my‘
""")
print(groucho_dep_grammer)#依存文法只能捕捉依存关系信息,不能指定依存关系类型
Dependency grammar with 7 productions
‘shot‘ -> ‘I‘
‘shot‘ -> ‘elephant‘
‘shot‘ -> ‘in‘
‘elephant‘ -> ‘an‘
‘elephant‘ -> ‘in‘
‘in‘ -> ‘pajamas‘
‘pajamas‘ -> ‘my‘
pdp = nltk.ProjectiveDependencyParser(groucho_dep_grammer)
sent = ‘I shot an elephant in my pajamas‘.split()
trees = pdp.parse(sent)
for tree in trees:
print(tree)
(shot I (elephant an (in (pajamas my))))
(shot I (elephant an) (in (pajamas my)))
from nltk.corpus import treebank
t = treebank.parsed_sents(‘wsj_0001.mrg‘)[0]
print(t)
(S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(, ,)
(ADJP (NP (CD 61) (NNS years)) (JJ old))
(, ,))
(VP
(MD will)
(VP
(VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as) (NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))
(. .))
#搜索树库找出句子的补语
def filter(tree):
child_nodes = [child.label() for child in tree if isinstance(child, nltk.Tree)]
return (tree.label() == ‘VP‘) and (‘S‘ in child_nodes)
from nltk.corpus import treebank
res = [subtree for tree in treebank.parsed_sents()
for subtree in tree.subtrees(filter)]
print(res)
entries = nltk.corpus.ppattach.attachments(‘training‘)
table = nltk.defaultdict(lambda: nltk.defaultdict(set))
for entry in entries:
key = entry.noun1 + ‘-‘ + entry.prep + ‘-‘ + entry.noun2
table[key][entry.attachment].add(entry.verb)
for key in sorted(table):
if len(table[key]) > 1:
print(key, ‘N:‘, sorted(table[key][‘N‘]), ‘V:‘, sorted(table[key][‘V‘]))
%-below-level N: [‘left‘] V: [‘be‘]
%-from-year N: [‘was‘] V: [‘declined‘, ‘dropped‘, ‘fell‘, ‘grew‘, ‘increased‘, ‘plunged‘, ‘rose‘, ‘was‘]
nltk.corpus.sinica_treebank.parsed_sents()[3450].draw()
#有害的歧义
grammar = nltk.CFG.fromstring("""
S -> NP V NP
NP -> NP Sbar
Sbar -> NP V
NP -> ‘fish‘
V -> ‘fish‘
""")
tokens = ["fish"] * 5
cp = nltk.ChartParser(grammar)
for tree in cp.parse(tokens):
print(tree)#(S (NP fish) (V fish) (NP (NP fish) (Sbar (NP fish) (V fish))))
(S (NP (NP fish) (Sbar (NP fish) (V fish))) (V fish) (NP fish))
#加权文法
#宾州树库样本中give和gave的用法
def give(t):
return (t.label() == ‘VP‘ and len(t) > 2 and t[1].label() == ‘NP‘
and (t[2].label() == ‘PP-DTV‘ or t[2].label() == ‘NP‘)
and (‘give‘ in t[0].leaves() or ‘gave‘ in t[0].leaves()))
def sent(t):
return ‘ ‘.join(token for token in t.leaves() if token[0] not in ‘*-0‘)
def print_node(t, width):
output = "%s %s: %s / %s: %s" % (sent(t[0]), t[1].label(), sent(t[1]), t[2].label(), sent(t[2]))
if len(output) > width:
output = output[:width] + "..."
print(output)
for tree in nltk.corpus.treebank.parsed_sents():
for t in tree.subtrees(give):
print_node(t, 72)
gave NP: the chefs / NP: a standing ovation
give NP: advertisers / NP: discounts for maintaining or increasing ad sp...
give NP: it / PP-DTV: to the politicians
gave NP: them / NP: similar help
give NP: them / NP:
give NP: only French history questions / PP-DTV: to students in a Europe...
give NP: federal judges / NP: a raise
give NP: consumers / NP: the straight scoop on the U.S. waste crisis
gave NP: Mitsui / NP: access to a high-tech medical product
give NP: Mitsubishi / NP: a window on the U.S. glass industry
give NP: much thought / PP-DTV: to the rates she was receiving , nor to ...
give NP: your Foster Savings Institution / NP: the gift of hope and free...
give NP: market operators / NP: the authority to suspend trading in futu...
gave NP: quick approval / PP-DTV: to $ 3.18 billion in supplemental appr...
give NP: the Transportation Department / NP: up to 50 days to review any...
give NP: the president / NP: such power
give NP: me / NP: the heebie-jeebies
give NP: holders / NP: the right , but not the obligation , to buy a cal...
gave NP: Mr. Thomas / NP: only a `` qualified ‘‘ rating , rather than ``...
give NP: the president / NP: line-item veto power
#概率上下文无关文法 所有产生式给定的左侧的概率之和必须为1
grammar = nltk.PCFG.fromstring("""
S -> NP VP [1.0]
VP -> TV NP [0.4]
VP -> IV [0.3]
VP -> DatV NP NP [0.3]
TV -> ‘saw‘ [1.0]
IV -> ‘ate‘ [1.0]
DatV -> ‘gave‘ [1.0]
NP -> ‘telescopes‘ [0.8]
NP -> ‘Jack‘ [0.2]
""")
print(grammar)
Grammar with 9 productions (start state = S)
S -> NP VP [1.0]
VP -> TV NP [0.4]
VP -> IV [0.3]
VP -> DatV NP NP [0.3]
TV -> ‘saw‘ [1.0]
IV -> ‘ate‘ [1.0]
DatV -> ‘gave‘ [1.0]
NP -> ‘telescopes‘ [0.8]
NP -> ‘Jack‘ [0.2]
viterbi_parser = nltk.ViterbiParser(grammar)
for t in viterbi_parser.parse([‘Jack‘,‘saw‘,‘telescopes‘]):#parse返回的分析树中包含了概率
print(t) #(S (NP Jack) (VP (TV saw) (NP telescopes))) (p=0.064)
原文:https://www.cnblogs.com/nxf-rabbit75/p/9571345.html