首页 > 其他 > 详细

BZOJ.5120.[清华集训2017]无限之环(费用流SPFA 黑白染色)

时间:2018-09-04 23:57:21      阅读:279      评论:0      收藏:0      [点我收藏+]

题目链接
https://loj.ac/problem/2321
https://www.luogu.org/problemnew/show/P4003

容易想到最小费用最大流分配度数。
因为水管形态固定,每个点还是要拆成4个点,分别当前格子表示向上右下左方向。
然后能比较容易地得到每种状态向其它状态转移的费用(比如原向上的可以流到向下)。注意比如向左向上的L,左连右,上连下,没有上连右(日常zz)。
解决旋转的问题后,还要处理流量从哪里产生、结束。
因为是网格图,容易想到黑白染色。题目中"没有漏水水管"即格子的断头两两匹配,而匹配只发生在黑白格之间。so源点向所有白格子连边,所有黑格子向汇点连边。
因为匹配关系是确定的,所以即使相邻不一定有水管相连,匹配边还是要连的。

SPFA单路增广好慢啊,等下学一波多路增广。https://www.luogu.org/recordnew/show/7755635

//7048kb    11328ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 200000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define OK(i,j) (1<=(i)&&(i)<=n&&1<=(j)&&(j)<=m)
const int N=1e4+5,M=N*30;

int n,m,src,des,Enum,H[N],nxt[M],fr[M],to[M],cap[M],cost[M],pre[N];
std::queue<int> q;
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
    int now=0;register char c=gc();
    for(;!isdigit(c);c=gc());
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now;
}
inline void AE(int u,int v,int c,bool flag)
{
    if(flag) std::swap(u,v);//黑→白 把边反向 
    to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], cost[Enum]=c, cap[Enum]=1, H[u]=Enum;
    to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], cost[Enum]=-c, cap[Enum]=0, H[v]=Enum;
}
bool SPFA()
{
    static int dis[N];
    static bool inq[N];
    memset(dis,0x3f,sizeof dis);
    dis[src]=0, q.push(src);
    while(!q.empty())
    {
        int x=q.front();
        q.pop(), inq[x]=0;//!...
        for(int v,i=H[x]; i; i=nxt[i])
            if(cap[i] && dis[v=to[i]]>dis[x]+cost[i])
                pre[v]=i, dis[v]=dis[x]+cost[i], !inq[v]&&(q.push(v),inq[v]=1);
    }
    return dis[des]<0x3f3f3f3f;
}
inline int Augment()
{
    int res=0;
    for(int i=des; i!=src; i=fr[pre[i]])
        res+=cost[pre[i]], --cap[pre[i]], ++cap[pre[i]^1];
    return res;
}
int MCMF(int &cost)
{
    int res=0;
    while(SPFA()) cost+=Augment(), ++res;
    return res;
}

int main()
{
    n=read(),m=read(); int tot=0;
    int id[n+1][m+1][4];
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=m; ++j)
            for(int k=0; k<4; ++k) id[i][j][k]=++tot;
    Enum=1, src=0, des=++tot;
    bool f; int flow=0;
    for(int i=1; i<=n; ++i)
        for(int j=1,s; j<=m; ++j)//0上 1右 2下 3左
        {//左 下 右 上 
            s=read(), f=(i+j)&1;
            int u=f?des:src,up=id[i][j][0],ri=id[i][j][1],down=id[i][j][2],le=id[i][j][3];
            if(s&1) AE(u,up,0,f), flow+=f^1;
            if(s&2) AE(u,ri,0,f), flow+=f^1;
            if(s&4) AE(u,down,0,f), flow+=f^1;
            if(s&8) AE(u,le,0,f), flow+=f^1;
//          if(!f)
//              for(int k=0; k<4; ++k)
//                  if(s>>k&1) AE(src,id[i][j][k],0,0), ++flow;
//                  else ;//else!
//          else for(int k=0; k<4; ++k) if(s>>k&1) AE(id[i][j][k],des,0,0);
            if(!f)
            {
                if(OK(i-1,j)) AE(up,id[i-1][j][2],0,0);
                if(OK(i,j-1)) AE(le,id[i][j-1][1],0,0);
                if(OK(i+1,j)) AE(down,id[i+1][j][0],0,0);
                if(OK(i,j+1)) AE(ri,id[i][j+1][3],0,0);
            }
            switch(s)
            {
                case 0: break;
                case 1: AE(up,le,1,f), AE(up,ri,1,f), AE(up,down,2,f); break;
                case 2: AE(ri,up,1,f), AE(ri,down,1,f), AE(ri,le,2,f); break;
                case 3: AE(up,down,1,f), AE(ri,le,1,f); break;
                case 4: AE(down,le,1,f), AE(down,ri,1,f), AE(down,up,2,f); break;
                case 5: break;
                case 6: AE(ri,le,1,f), AE(down,up,1,f); break;
                case 7: AE(up,le,1,f), AE(down,le,1,f), AE(ri,le,2,f); break;
                case 8: AE(le,up,1,f), AE(le,down,1,f), AE(le,ri,2,f); break;
                case 9: AE(le,ri,1,f), AE(up,down,1,f); break;
                case 10: break;
                case 11: AE(le,down,1,f), AE(ri,down,1,f), AE(up,down,2,f); break;
                case 12: AE(le,ri,1,f), AE(down,up,1,f); break;
                case 13: AE(up,ri,1,f), AE(down,ri,1,f), AE(le,ri,2,f); break;
                case 14: AE(le,up,1,f), AE(ri,up,1,f), AE(down,up,2,f); break;
                case 15: break;
            }
        }
    int cost=0;
    if(MCMF(cost)==flow) printf("%d\n",cost);
    else puts("-1");

    return 0;
}

BZOJ.5120.[清华集训2017]无限之环(费用流SPFA 黑白染色)

原文:https://www.cnblogs.com/SovietPower/p/9589155.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!