首页 > 其他 > 详细

ROC检验分类树性能

时间:2014-07-26 01:02:26      阅读:482      评论:0      收藏:0      [点我收藏+]
001 #############################################################
002 #############       读取excel文件      ######################
003 #############################################################
004 #root<-"C:/Users/liming/Desktop/写书/chap7/cbc/"
005 root<-"E:/work/写书/chap7/cbc(可以使用-但是未写书书中)/"
006 file<-paste(root,"data.xls",sep="")
007 library (RODBC)
008 excel_file <- odbcConnectExcel(file)
009 data<- sqlFetch ( excel_file,"data")[,1:17]#由于excel文件问题
010 close ( excel_file )
011 ##############################################################
012 ####数据处理
013 ##############################################################
014 data$chineseCook<-as.factor(ifelse(data$chineseCook==0,0,1))#如果购买Cook书则为1,没有购买则为0
015 data$chineseHist<-as.factor(ifelse(data$chineseHist==0,0,1))#如果购买Atlas书则为1,没有购买则为0
016 data$chineseArt<-as.factor(ifelse(data$chineseArt==0,0,1))#如果购买Art书则为1,没有购买则为0
017 data$Gender<-as.factor(data$Gender)#性别
018 data$HanDynastyArt<-as.factor(data$HanDynastyArt)#目标变量
019 ##############################################################
020 ####对不平衡目标样本的样本处理
021 ##############################################################
022 balance<-function(data,yval){
023    y.vector<-with(data,get(yval))#在data数据框中读取列名称为yval参数的向量,例如如果yval设置为HanDynastyArt则y.vector就是data$HanDynastyArt
024    index.1<-which(y.vector==1)
025    index.0<-which(y.vector==0)
026    index.1<-sample(index.1,length(index.0),replace=T)
027    result<-data[sample(c(index.0,index.1)),]
028    result
029 }
030 data<-balance(data,"HanDynastyArt")
031 ##############################################################
032 ####分割训练集数据和测试数据
033 ##############################################################
034 apart.data<-function(data,train.data.persent=0.7){
035    train.index<-sample(c(1:nrow(data)),round(nrow(data)*train.data.persent))
036    data.train<-data[train.index,]
037    data.test<-data[-c(train.index),]
038    result<-list(train=data.train,test=data.test)
039    result
040 }
041 p.data<-apart.data(data)
042 data.train<-p.data$train
043 data.test<-p.data$test
044 ###############################################################
045 mod.formula<-as.formula("HanDynastyArt~Gender+M+R+F+FirstPurch+ChildBks+YouthBks+CookBks+DoItYBks+RefBks+ArtBks+GeogBks+chineseCook+chineseHist+chineseArt")
046 ####  party  ####
047 library("party")
048 ctree.sol<-ctree(mod.formula,data=data.train,control= ctree_control(mincriterion =0.95))
049 #plot(ctree.sol)
050 ####  rpart  ####
051 library("rpart")
052 rpart.sol<-rpart(mod.formula,data=data.train,control=list(cp=0.001))
053 #plot(rpart.sol,uniform=TRUE,compress=TRUE,lty=3,branch=0.7)
054 #text(rpart.sol,all=TRUE,digits=7,use.n=TRUE,cex=0.9,xpd=TRUE)
055 ####  logit  ####
056 glm.sol<-glm(mod.formula,data=data.train,family=binomial("logit"))
057 ####  nnet  ####
058 library(nnet)
059 nnet.sol<-nnet(mod.formula,data=data.train,size=30,maxit=1000)#size越高 树越大
060 ####  svm   ####
061 library(e1071)
062 svm.sol<-svm(mod.formula,data=data.train,probability = TRUE)#probability为T表示计算预测数值为取1和0的概率,
063 ##############################################################
064 ####性能检验
065 ##############################################################
066 library(ROCR)
067 sol.performance<-function(sol,test,add.logic=F,color=NA){
068    ########使用prediction函数初始化数据########
069    test.real<-as.numeric(ifelse(test$HanDynastyArt==0,0,1))#把目标变量的factor0变为numeric0。factor1变为numeric1。
070    sol.class<-class(sol)[1]
071    if(sol.class=="BinaryTree"){#ctree函数
072        test.pred<-as.numeric(predict(sol,test))
073        test.pred<-ifelse(test.pred==1,0,1)#把目标变量的1变为0;2变为1
074    }else{if(sol.class=="rpart"){#rpart函数
075        test.pred<-predict(sol,test)[,2]
076    }else{if(sol.class=="glm"){#glm函数
077        glm.pred<-predict(sol,test)
078        test.pred<-1/(1+exp(-glm.pred))
079    }else{if(sol.class=="nnet.formula"){#nnet函数
080        test.pred<-predict(sol,test)
081    }else{if(sol.class=="svm.formula"){#svm函数
082        test.pred<-attr(predict(sol,test,probability=T),"probabilities")[,2]
083    }else{
084        print("ERROR:sol输入有误!")
085        return()
086    }}}}}
087    predictions<-prediction(test.pred,test.real) 
088    ########计算混淆矩阵并使用performance函数计算灵敏度和auc########
089    if(sol.class=="BinaryTree"){#ctree函数
090        print("混淆矩阵:")
091        print(table(test.pred,test.real,dnn=c("预测数值","真实数值")))
092        sens<-performance(predictions,sens)@y.values[[1]][2]
093        print(paste("灵敏度(Sensitivity):",sens,sep=""))
094        spec<-performance(predictions,spec)@y.values[[1]][2]
095        print(paste("特指度(Specicity):",spec,sep=""))
096    }else{if(sol.class=="rpart"){#rpart函数
097        print("混淆矩阵:")
098        tmp<-ifelse(as.numeric(predict(sol,test,type="class"))==1,0,1)#把目标变量的1变为0;2变为1
099        print(table(tmp,test.real,dnn=c("预测数值","真实数值")))
100        auc<-performance(predictions,auc)@y.values
101        print(paste("ROC曲线下的面积(auc):",auc,sep=""))
102    }else{if(sol.class=="glm"){#glm函数
103        print("混淆矩阵:")
104        tmp<-ifelse(test.pred>0.5,1,0)
105        print(table(tmp,test.real,dnn=c("预测数值","真实数值")))
106        auc<-performance(predictions,auc)@y.values
107        print(paste("ROC曲线下的面积(auc):",auc,sep=""))
108    }else{if(sol.class=="nnet.formula"){#nnet函数
109        print("混淆矩阵:")
110        tmp<-as.numeric(predict(sol,test,type="class"))
111        print(table(tmp,test.real,dnn=c("预测数值","真实数值")))
112        auc<-performance(predictions,auc)@y.values
113        print(paste("ROC曲线下的面积(auc):",auc,sep=""))
114    }else{if(sol.class=="svm.formula"){#svm函数
115        print("混淆矩阵:")
116        tmp<-ifelse(as.numeric(predict(sol,test,type="class"))==1,0,1)#把目标变量的1变为0;2变为1
117        print(table(tmp,test.real,dnn=c("预测数值","真实数值")))
118        auc<-performance(predictions,auc)@y.values
119        print(paste("ROC曲线下的面积(auc):",auc,sep=""))
120    }else{
121        print("ERROR:sol输入有误!")
122        return()
123    }}}}}
124    ########绘制ROC曲线####
125    #如果predict返回的是0/1(tree模型)则roc是一个点的折线,如果是0-1的概率连续值(logic nnet等)则roc是多个点组成的曲线
126    plot(performance(predictions,tpr,fpr),colorize=T,main="ROC图",ylab="真正率(TPR)=灵敏度(Sensitivity)",xlab="假正率(FPR)=1-特指度(1-Specicity)",add=add.logic,colorize.palette=color)
127 
128 }
129 col<-rainbow(5,start=0,end=4/6)
130 sol.performance(ctree.sol,data.test,F,col[1])
131 sol.performance(rpart.sol,data.test,T,col[2])
132 sol.performance(glm.sol,data.test,T,col[3])
133 sol.performance(nnet.sol,data.test,T,col[4])
134 sol.performance(svm.sol,data.test,T,col[5])
135 id=c("ctree模型","rpart模型","glm模型","nnet模型","svm模型")
136 legend("bottomright",legend=id,horiz=T,pch=15,col=col,cex=0.8,bty="n")

数据源下载链接为http://vdisk.weibo.com/s/sFZzV0wnhRPN;
该数据集是某图书出版社研究用户是否会购买新书而做的调查问卷结果,其中的HanDynastyArt是目标变量。
输出的结果为,表示不同的模型下roc曲线:
bubuko.com,布布扣

 

ROC检验分类树性能,布布扣,bubuko.com

ROC检验分类树性能

原文:http://www.cnblogs.com/liulunyang/p/3868738.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!