首页 > 其他 > 详细

unique-paths I &II 路径数,动态规划

时间:2018-09-12 23:21:17      阅读:228      评论:0      收藏:0      [点我收藏+]

A robot is located at the top-left corner of a m x n grid (marked ‘Start‘ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘ in the diagram below).

How many possible unique paths are there?

技术分享图片

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

class Solution {
public:
    int uniquePaths(int m, int n) {
        int path[m][n];
        for(int i=0;i<m;++i)
            path[i][0]=1;
        for(int i=0;i<n;++i)
            path[0][i]=1;
        for(int i=1;i<m;++i)
        {
            for(int j=1;j<n;++j)
            {
                path[i][j]=path[i-1][j]+path[i][j-1];
            }
        }
        return path[m-1][n-1];
    }
};

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as1and0respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is2.

Note: m and n will be at most 100.

有障碍物的地方不能走,循环内加判断

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
        int path[m][n];
        for(int i=0;i<m;++i)
        {
            for(int j=0;j<n;++j)
            {
                if(obstacleGrid[i][j]==1)
                {
                    path[i][j]=0;
                    continue;
                }
                if(i==0&&j==0){
                    path[i][j]=1;
                    continue;
                }
                if(i==0)
                {
                    path[i][j]=path[i][j-1];
                } else if(j==0){
                    path[i][j]=path[i-1][j];
                }
                else{
                    path[i][j]=path[i-1][j]+path[i][j-1];
                }
            }
        }
        return path[m-1][n-1];
    }
};

 

unique-paths I &II 路径数,动态规划

原文:https://www.cnblogs.com/zl1991/p/9638001.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!