gRPC Streaming的操作对象由服务端和客户端组成。在一个包含了多个不同服务的集群环境中可能需要从一个服务里调用另一个服务端提供的服务。这时调用服务端又成为了提供服务端的客户端了(服务消费端)。那么如果我们用streaming形式来提交服务需求及获取计算结果就是以一个服务端为Source另一个服务端为通过式passthrough Flow的stream运算了。讲详细点就是请求方用需求构建Source,以连接Flow的方式把需求传递给服务提供方。服务提供方在Flow内部对需求进行处理后再把结果返回来,请求方run这个连接的stream应该就可以得到需要的结果了。下面我们就针对以上场景在一个由JDBC,Cassandra,MongoDB几种gRPC服务组成的集群环境里示范在这几个服务之间的stream连接和运算。
首先,我们设计一个简单但比较有代表性的例子:从JDBC的客户端传一个字符型消息hello给JDBC服务端、JDBC服务端在hello后面添加“,from jdbc to cassandra”然后通过Cassandra客户端把消息当作请求传给Cassandra服务端、Cassandra服务端在消息后面再加上“,from cassandra to mongo”并通过MongoDB客户端把消息传给MongoDB服务端、最后MongoDB服务端在消息后面添加“,mongo says hi”。整个stream的形状是 jdbc-client->jdbc-service->cassandra-service-mongodb-service。如果run这个stream得到的结果应该是一个描述完整移动路径的消息。从请求-服务角度来描述:我们可以把每个节点消息更新处理当作某种完整的数据处理过程。
以下分别是JDBC,Cassandra,MongoDB gRPC IDL定义:
service JDBCServices {
rpc greeting(stream HelloMsg) returns (stream HelloMsg) {}
}
service CQLServices {
rpc greeting(stream HelloMsg) returns (stream HelloMsg) {}
}
service MGOServices {
rpc greeting(stream HelloMsg) returns (stream HelloMsg) {}
}
三个服务共用了protobuf消息类型HelloMsg。我们把共用的消息统一放到一个common.proto文件里:
syntax = "proto3";
package sdp.grpc.services;
message HelloMsg {
string hello = 1;
}
message DataRow {
string countyname = 1;
string statename = 2;
int32 reportyear = 3;
int32 value = 4;
}
然后在示范应用的.proto文件中用import 把所有protobuf,gRPC服务定义都集中起来:
syntax = "proto3";
import "google/protobuf/wrappers.proto";
import "google/protobuf/any.proto";
import "scalapb/scalapb.proto";
option (scalapb.options) = {
// use a custom Scala package name
// package_name: "io.ontherocks.introgrpc.demo"
// don‘t append file name to package
flat_package: true
// generate one Scala file for all messages (services still get their own file)
single_file: true
// add imports to generated file
// useful when extending traits or using custom types
// import: "io.ontherocks.hellogrpc.RockingMessage"
// code to put at the top of generated file
// works only with `single_file: true`
//preamble: "sealed trait SomeSealedTrait"
};
/*
* Demoes various customization options provided by ScalaPBs.
*/
package sdp.grpc.services;
import "misc/sdp.proto";
import "common.proto";
import "cql/cql.proto";
import "jdbc/jdbc.proto";
import "mgo/mgo.proto";
下面我们把最核心的服务实现挑出来讲解一下,先看看Cassandra服务的实现:
import sdp.grpc.mongo.client.MGOClient
class CQLStreamingServices(implicit ec: ExecutionContextExecutor,
mat: ActorMaterializer, session: Session)
extends CqlGrpcAkkaStream.CQLServices with LogSupport{
val mongoClient = new MGOClient
val stub = mongoClient.stub
def sayHelloTo(msg: String): Flow[HelloMsg, HelloMsg, NotUsed] =
Flow[HelloMsg].map { r => HelloMsg(r.hello + msg)}
.via(stub.greeting)
override def greeting: Flow[HelloMsg, HelloMsg, NotUsed] =
Flow[HelloMsg]
.via(sayHelloTo(",from cassandra to mongo"))
}
streaming方式的gRPC服务其实就是一个akka-stream的Flow[R1,R2,M],它把收到的数据R1处理后转换成R2输出。在处理R1的环节里可能会需要其它服务的运算结果。在以上例子里CQLService把收到的消息加工转换后传给MGOService并等待MGOService再深度加工返还的结果,所以sayHelloTo还是一个有两个节点的Flow:在第一个节点中对收到的消息进行加工,第二个节点把加工的消息传给另一个服务并连接它的运算结果作为本身最终的输出。调用其它跨集群节点的服务必须经该服务的gRPC客户端进行,这里调用的MGOClient:
package sdp.grpc.mongo.client
import sdp.grpc.services._
import sdp.logging.LogSupport
import io.grpc._
import common._
import sdp.grpc.services._
import akka.stream.scaladsl._
import akka.NotUsed
class MGOClient extends LogSupport {
val channel = ManagedChannelBuilder
.forAddress("localhost", 50051)
.usePlaintext()
.build()
val stub = MgoGrpcAkkaStream.stub(channel)
}
JDBCService连接CQLService, CQLService连接MGOService:
import sdp.grpc.cassandra.client.CQLClient
class JDBCStreamingServices(implicit ec: ExecutionContextExecutor)
extends JdbcGrpcAkkaStream.JDBCServices with LogSupport {
val cassandraClient = new CQLClient
val stub = cassandraClient.stub
def sayHelloTo(msg: String): Flow[HelloMsg,HelloMsg,NotUsed] =
Flow[HelloMsg]
.map {r => HelloMsg(r.hello + msg)}
.via(stub.greeting)
override def greeting: Flow[HelloMsg, HelloMsg, NotUsed] =
Flow[HelloMsg]
.via(sayHelloTo(",from jdbc to cassandra"))
}
最后我们用DemoApp来示范整个过程:
package demo.sdp.grpc
import akka.actor.ActorSystem
import akka.stream.{ActorMaterializer, ThrottleMode}
import sdp.grpc.jdbc.client.JDBCClient
object DemoApp extends App {
implicit val system = ActorSystem("jdbcClient")
implicit val mat = ActorMaterializer.create(system)
implicit val ec = system.dispatcher
val jdbcClient = new JDBCClient
jdbcClient.sayHello.runForeach(r => println(r.hello))
scala.io.StdIn.readLine()
mat.shutdown()
system.terminate()
}
DemoApp调用了JDBCClient:
package sdp.grpc.jdbc.client
import sdp.grpc.services._
import sdp.logging.LogSupport
import io.grpc._
import common._
import sdp.grpc.services._
import akka.stream.scaladsl._
import akka.NotUsed
class JDBCClient extends LogSupport {
val channel = ManagedChannelBuilder
.forAddress("localhost", 50053)
.usePlaintext()
.build()
val stub = JdbcGrpcAkkaStream.stub(channel)
def sayHello: Source[HelloMsg, NotUsed] = {
val row = HelloMsg("hello ")
val rows = List.fill[HelloMsg](100)(row)
Source
.fromIterator(() => rows.iterator)
.via(stub.greeting)
}
}
运行DemoApp显示的结果:
hello ,from jdbc to cassandra,from cassandra to mongo, mongo says hi
hello ,from jdbc to cassandra,from cassandra to mongo, mongo says hi
hello ,from jdbc to cassandra,from cassandra to mongo, mongo says hi
hello ,from jdbc to cassandra,from cassandra to mongo, mongo says hi
hello ,from jdbc to cassandra,from cassandra to mongo, mongo says hi
...
PICE(6):集群环境里多异类端点gRPC Streaming - Heterogeneous multi-endpoints gRPC streaming
原文:https://www.cnblogs.com/tiger-xc/p/9660828.html